BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 18855422)

  • 1. Substrate inhibition kinetic model for West Nile virus NS2B-NS3 protease.
    Tomlinson SM; Watowich SJ
    Biochemistry; 2008 Nov; 47(45):11763-70. PubMed ID: 18855422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Homology modeling and molecular dynamics simulations of Dengue virus NS2B/NS3 protease: insight into molecular interaction.
    Wichapong K; Pianwanit S; Sippl W; Kokpol S
    J Mol Recognit; 2010; 23(3):283-300. PubMed ID: 19693793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cleavage preference distinguishes the two-component NS2B-NS3 serine proteinases of Dengue and West Nile viruses.
    Shiryaev SA; Kozlov IA; Ratnikov BI; Smith JW; Lebl M; Strongin AY
    Biochem J; 2007 Feb; 401(3):743-52. PubMed ID: 17067286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Homology modeling and molecular dynamics study of West Nile virus NS3 protease: a molecular basis for the catalytic activity increased by the NS2B cofactor.
    Zhou H; Singh NJ; Kim KS
    Proteins; 2006 Nov; 65(3):692-701. PubMed ID: 16972281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphonate inhibitors of West Nile virus NS2B/NS3 protease.
    Skoreński M; Milewska A; Pyrć K; Sieńczyk M; Oleksyszyn J
    J Enzyme Inhib Med Chem; 2019 Dec; 34(1):8-14. PubMed ID: 30362835
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of NS2B-NS3 protease and furin inhibition on West Nile and Dengue virus replication.
    Kouretova J; Hammamy MZ; Epp A; Hardes K; Kallis S; Zhang L; Hilgenfeld R; Bartenschlager R; Steinmetzer T
    J Enzyme Inhib Med Chem; 2017 Dec; 32(1):712-721. PubMed ID: 28385094
    [TBL] [Abstract][Full Text] [Related]  

  • 7. STD-NMR experiments identify a structural motif with novel second-site activity against West Nile virus NS2B-NS3 protease.
    Schöne T; Grimm LL; Sakai N; Zhang L; Hilgenfeld R; Peters T
    Antiviral Res; 2017 Oct; 146():174-183. PubMed ID: 28927677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the West Nile virus protease substrate specificity and inhibitors.
    Mueller NH; Yon C; Ganesh VK; Padmanabhan R
    Int J Biochem Cell Biol; 2007; 39(3):606-14. PubMed ID: 17188926
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzymatic characterization and homology model of a catalytically active recombinant West Nile virus NS3 protease.
    Nall TA; Chappell KJ; Stoermer MJ; Fang NX; Tyndall JD; Young PR; Fairlie DP
    J Biol Chem; 2004 Nov; 279(47):48535-42. PubMed ID: 15322074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Profiling of flaviviral NS2B-NS3 protease specificity provides a structural basis for the development of selective chemical tools that differentiate Dengue from Zika and West Nile viruses.
    Rut W; Groborz K; Zhang L; Modrzycka S; Poreba M; Hilgenfeld R; Drag M
    Antiviral Res; 2020 Mar; 175():104731. PubMed ID: 32014497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site-directed mutagenesis and kinetic studies of the West Nile Virus NS3 protease identify key enzyme-substrate interactions.
    Chappell KJ; Nall TA; Stoermer MJ; Fang NX; Tyndall JD; Fairlie DP; Young PR
    J Biol Chem; 2005 Jan; 280(4):2896-903. PubMed ID: 15494419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Breathing new life into West Nile virus therapeutics; discovery and study of zafirlukast as an NS2B-NS3 protease inhibitor.
    Martinez AA; Espinosa BA; Adamek RN; Thomas BA; Chau J; Gonzalez E; Keppetipola N; Salzameda NT
    Eur J Med Chem; 2018 Sep; 157():1202-1213. PubMed ID: 30193218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and in vitro evaluation of West Nile virus protease inhibitors based on the 2-{6-[2-(5-phenyl-4H-{1,2,4]triazol-3-ylsulfanyl)acetylamino]benzothiazol-2-ylsulfanyl}acetamide scaffold.
    Samanta S; Lim TL; Lam Y
    ChemMedChem; 2013 Jun; 8(6):994-1001. PubMed ID: 23619931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. West Nile Virus (WNV) protease and membrane interactions revealed by NMR spectroscopy.
    Gayen S; Chen AS; Huang Q; Kang C
    Biochem Biophys Res Commun; 2012 Jul; 423(4):799-804. PubMed ID: 22713461
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and in vitro evaluation of West Nile virus protease inhibitors based on the 1,3,4,5-tetrasubstituted 1H-pyrrol-2(5H)-one scaffold.
    Gao Y; Samanta S; Cui T; Lam Y
    ChemMedChem; 2013 Sep; 8(9):1554-60. PubMed ID: 23868614
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Context-Dependent Cleavage of the Capsid Protein by the West Nile Virus Protease Modulates the Efficiency of Virus Assembly.
    VanBlargan LA; Davis KA; Dowd KA; Akey DL; Smith JL; Pierson TC
    J Virol; 2015 Aug; 89(16):8632-42. PubMed ID: 26063422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection and in-cell selectivity profiling of the full-length West Nile virus NS2B/NS3 serine protease using membrane-anchored fluorescent substrates.
    Condotta SA; Martin MM; Boutin M; Jean F
    Biol Chem; 2010 May; 391(5):549-59. PubMed ID: 20302513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. West Nile Virus NS2B/NS3 protease as an antiviral target.
    Chappell KJ; Stoermer MJ; Fairlie DP; Young PR
    Curr Med Chem; 2008; 15(27):2771-84. PubMed ID: 18991636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NMR analysis of the dynamic exchange of the NS2B cofactor between open and closed conformations of the West Nile virus NS2B-NS3 protease.
    Su XC; Ozawa K; Qi R; Vasudevan SG; Lim SP; Otting G
    PLoS Negl Trop Dis; 2009 Dec; 3(12):e561. PubMed ID: 19997625
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NMR study of complexes between low molecular mass inhibitors and the West Nile virus NS2B-NS3 protease.
    Su XC; Ozawa K; Yagi H; Lim SP; Wen D; Ekonomiuk D; Huang D; Keller TH; Sonntag S; Caflisch A; Vasudevan SG; Otting G
    FEBS J; 2009 Aug; 276(15):4244-55. PubMed ID: 19583774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.