These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 18855460)

  • 1. Desirability-based methods of multiobjective optimization and ranking for global QSAR studies. Filtering safe and potent drug candidates from combinatorial libraries.
    Cruz-Monteagudo M; Borges F; Cordeiro MN; Cagide Fajin JL; Morell C; Ruiz RM; Cañizares-Carmenate Y; Dominguez ER
    J Comb Chem; 2008; 10(6):897-913. PubMed ID: 18855460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Desirability-based multiobjective optimization for global QSAR studies: application to the design of novel NSAIDs with improved analgesic, antiinflammatory, and ulcerogenic profiles.
    Cruz-Monteagudo M; Borges F; Cordeiro MN
    J Comput Chem; 2008 Nov; 29(14):2445-59. PubMed ID: 18452123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular optimization using computational multi-objective methods.
    Nicolaou CA; Brown N; Pattichis CS
    Curr Opin Drug Discov Devel; 2007 May; 10(3):316-24. PubMed ID: 17554858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prioritizing Hits with Appropriate Trade-Offs Between HIV-1 Reverse Transcriptase Inhibitory Efficacy and MT4 Blood Cells Toxicity Through Desirability-Based Multiobjective Optimization and Ranking.
    Cruz-Monteagudo M; PhamThe H; Cordeiro MN; Borges F
    Mol Inform; 2010 Apr; 29(4):303-21. PubMed ID: 27463058
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SeleX-CS: a new consensus scoring algorithm for hit discovery and lead optimization.
    Bar-Haim S; Aharon A; Ben-Moshe T; Marantz Y; Senderowitz H
    J Chem Inf Model; 2009 Mar; 49(3):623-33. PubMed ID: 19231809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of QSAR and shape pharmacophore modeling approaches for targeted chemical library design.
    Ebalunode JO; Zheng W; Tropsha A
    Methods Mol Biol; 2011; 685():111-33. PubMed ID: 20981521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strategies for the use of mixture-based synthetic combinatorial libraries: scaffold ranking, direct testing in vivo, and enhanced deconvolution by computational methods.
    Houghten RA; Pinilla C; Giulianotti MA; Appel JR; Dooley CT; Nefzi A; Ostresh JM; Yu Y; Maggiora GM; Medina-Franco JL; Brunner D; Schneider J
    J Comb Chem; 2008; 10(1):3-19. PubMed ID: 18067268
    [No Abstract]   [Full Text] [Related]  

  • 8. Multidimensional drug design: simultaneous analysis of binding and relative efficacy profiles of N(6)-substituted-4'-thioadenosines A3 adenosine receptor agonists.
    Cruz-Monteagudo M; Cordeiro MN; Teijeira M; González MP; Borges F
    Chem Biol Drug Des; 2010 Jun; 75(6):607-18. PubMed ID: 20408851
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identifying promising compounds in drug discovery: genetic algorithms and some new statistical techniques.
    Mandal A; Johnson K; Wu CF; Bornemeier D
    J Chem Inf Model; 2007; 47(3):981-8. PubMed ID: 17425300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the suitability of different representations of solid catalysts for combinatorial library design by genetic algorithms.
    Gobin OC; Schüth F
    J Comb Chem; 2008; 10(6):835-46. PubMed ID: 18693763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-directed combinatorial library design.
    Zhou JZ
    Curr Opin Chem Biol; 2008 Jun; 12(3):379-85. PubMed ID: 18328830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. StructRank: a new approach for ligand-based virtual screening.
    Rathke F; Hansen K; Brefeld U; Müller KR
    J Chem Inf Model; 2011 Jan; 51(1):83-92. PubMed ID: 21166393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global antifungal profile optimization of chlorophenyl derivatives against Botrytis cinerea and Colletotrichum gloeosporioides.
    Saiz-Urra L; Bustillo Pérez AJ; Cruz-Monteagudo M; Pinedo-Rivilla C; Aleu J; Hernández-Galán R; Collado IG
    J Agric Food Chem; 2009 Jun; 57(11):4838-43. PubMed ID: 19489624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular library design using multi-objective optimization methods.
    Nicolaou CA; Kannas CC
    Methods Mol Biol; 2011; 685():53-69. PubMed ID: 20981518
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A scalable approach to combinatorial library design for drug discovery.
    Sharma P; Salapaka S; Beck C
    J Chem Inf Model; 2008 Jan; 48(1):27-41. PubMed ID: 18052333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emerging chemical patterns: a new methodology for molecular classification and compound selection.
    Auer J; Bajorath J
    J Chem Inf Model; 2006; 46(6):2502-14. PubMed ID: 17125191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthetic library design.
    Huwe CM
    Drug Discov Today; 2006 Aug; 11(15-16):763-7. PubMed ID: 16846805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A fast exchange algorithm for designing focused libraries in lead optimization.
    Le Bailly de Tilleghem C; Beck B; Boulanger B; Govaerts B
    J Chem Inf Model; 2005; 45(3):758-67. PubMed ID: 15921465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel in silico approach to drug discovery via computational intelligence.
    Hecht D; Fogel GB
    J Chem Inf Model; 2009 Apr; 49(4):1105-21. PubMed ID: 19348414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ranking chemical structures for drug discovery: a new machine learning approach.
    Agarwal S; Dugar D; Sengupta S
    J Chem Inf Model; 2010 May; 50(5):716-31. PubMed ID: 20387860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.