These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

363 related articles for article (PubMed ID: 18855545)

  • 1. The role of the parietal lobe in visual extinction studied with transcranial magnetic stimulation.
    Battelli L; Alvarez GA; Carlson T; Pascual-Leone A
    J Cogn Neurosci; 2009 Oct; 21(10):1946-55. PubMed ID: 18855545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contralesional rTMS relieves visual extinction in chronic stroke.
    Agosta S; Herpich F; Miceli G; Ferraro F; Battelli L
    Neuropsychologia; 2014 Sep; 62():269-76. PubMed ID: 25090926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Testing the inter-hemispheric competition account of visual extinction with combined TMS/fMRI.
    Petitet P; Noonan MP; Bridge H; O'Reilly JX; O'Shea J
    Neuropsychologia; 2015 Jul; 74():63-73. PubMed ID: 25911128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Frontal eye fields control attentional modulation of alpha and gamma oscillations in contralateral occipitoparietal cortex.
    Marshall TR; O'Shea J; Jensen O; Bergmann TO
    J Neurosci; 2015 Jan; 35(4):1638-47. PubMed ID: 25632139
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Attentional load and sensory competition in human vision: modulation of fMRI responses by load at fixation during task-irrelevant stimulation in the peripheral visual field.
    Schwartz S; Vuilleumier P; Hutton C; Maravita A; Dolan RJ; Driver J
    Cereb Cortex; 2005 Jun; 15(6):770-86. PubMed ID: 15459076
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Local Immediate versus Long-Range Delayed Changes in Functional Connectivity Following rTMS on the Visual Attention Network.
    Battelli L; Grossman ED; Plow EB
    Brain Stimul; 2017; 10(2):263-269. PubMed ID: 27838275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. fMRI-guided TMS on cortical eye fields: the frontal but not intraparietal eye fields regulate the coupling between visuospatial attention and eye movements.
    Van Ettinger-Veenstra HM; Huijbers W; Gutteling TP; Vink M; Kenemans JL; Neggers SF
    J Neurophysiol; 2009 Dec; 102(6):3469-80. PubMed ID: 19812293
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Processing of bilateral versus unilateral conditions: evidence for the functional contribution of the ventral attention network.
    Beume LA; Kaller CP; Hoeren M; Klöppel S; Kuemmerer D; Glauche V; Köstering L; Mader I; Rijntjes M; Weiller C; Umarova R
    Cortex; 2015 May; 66():91-102. PubMed ID: 25824980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Voluntary orienting is dissociated from target detection in human posterior parietal cortex.
    Corbetta M; Kincade JM; Ollinger JM; McAvoy MP; Shulman GL
    Nat Neurosci; 2000 Mar; 3(3):292-7. PubMed ID: 10700263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Topographic maps of visual spatial attention in human parietal cortex.
    Silver MA; Ress D; Heeger DJ
    J Neurophysiol; 2005 Aug; 94(2):1358-71. PubMed ID: 15817643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Topographic organization for delayed saccades in human posterior parietal cortex.
    Schluppeck D; Glimcher P; Heeger DJ
    J Neurophysiol; 2005 Aug; 94(2):1372-84. PubMed ID: 15817644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dissociable effects of anodal and cathodal tDCS reveal distinct functional roles for right parietal cortex in the detection of single and competing stimuli.
    Filmer HL; Dux PE; Mattingley JB
    Neuropsychologia; 2015 Jul; 74():120-6. PubMed ID: 25637773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural basis of visual distraction.
    Kim SY; Hopfinger JB
    J Cogn Neurosci; 2010 Aug; 22(8):1794-807. PubMed ID: 19702467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The time course for visual extinction after a 'virtual' lesion of right posterior parietal cortex.
    Vesia M; Niemeier M; Black SE; Staines WR
    Brain Cogn; 2015 Aug; 98():27-34. PubMed ID: 26051527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brain polarization of parietal cortex augments training-induced improvement of visual exploratory and attentional skills.
    Bolognini N; Fregni F; Casati C; Olgiati E; Vallar G
    Brain Res; 2010 Aug; 1349():76-89. PubMed ID: 20599813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acute visual neglect and extinction: distinct functional state of the visuospatial attention system.
    Umarova RM; Saur D; Kaller CP; Vry MS; Glauche V; Mader I; Hennig J; Weiller C
    Brain; 2011 Nov; 134(Pt 11):3310-25. PubMed ID: 21948940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interhemispheric imbalance during visuospatial attention investigated by unilateral and bilateral TMS over human parietal cortices.
    Dambeck N; Sparing R; Meister IG; Wienemann M; Weidemann J; Topper R; Boroojerdi B
    Brain Res; 2006 Feb; 1072(1):194-9. PubMed ID: 16426588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tactile-visual integration in the posterior parietal cortex: a functional magnetic resonance imaging study.
    Nakashita S; Saito DN; Kochiyama T; Honda M; Tanabe HC; Sadato N
    Brain Res Bull; 2008 Mar; 75(5):513-25. PubMed ID: 18355627
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Right parietal cortex plays a critical role in change blindness.
    Beck DM; Muggleton N; Walsh V; Lavie N
    Cereb Cortex; 2006 May; 16(5):712-7. PubMed ID: 16120797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TMS-EEG reveals hemispheric asymmetries in top-down influences of posterior intraparietal cortex on behavior and visual event-related potentials.
    Koivisto M; Grassini S; Hurme M; Salminen-Vaparanta N; Railo H; Vorobyev V; Tallus J; Paavilainen T; Revonsuo A
    Neuropsychologia; 2017 Dec; 107():94-101. PubMed ID: 29137988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.