These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 18855568)

  • 1. Computing algebraic functions with biochemical reaction networks.
    Buisman HJ; ten Eikelder HM; Hilbers PA; Liekens AM
    Artif Life; 2009; 15(1):5-19. PubMed ID: 18855568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multistationarity and Bistability for Fewnomial Chemical Reaction Networks.
    Feliu E; Helmer M
    Bull Math Biol; 2019 Apr; 81(4):1089-1121. PubMed ID: 30564990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A topological approach to chemical organizations.
    Benkö G; Centler F; Dittrich P; Flamm C; Stadler BM; Stadler PF
    Artif Life; 2009; 15(1):71-88. PubMed ID: 18855563
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Algebraic models of biochemical networks.
    Laubenbacher R; Jarrah AS
    Methods Enzymol; 2009; 467():163-196. PubMed ID: 19897093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computing Weakly Reversible Deficiency Zero Network Translations Using Elementary Flux Modes.
    Johnston MD; Burton E
    Bull Math Biol; 2019 May; 81(5):1613-1644. PubMed ID: 30790189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Delay stability of reaction systems.
    Craciun G; Mincheva M; Pantea C; Yu PY
    Math Biosci; 2020 Aug; 326():108387. PubMed ID: 32470445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Geometric Method for Model Reduction of Biochemical Networks with Polynomial Rate Functions.
    Samal SS; Grigoriev D; Fröhlich H; Weber A; Radulescu O
    Bull Math Biol; 2015 Dec; 77(12):2180-211. PubMed ID: 26597097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A stronger necessary condition for the multistationarity of chemical reaction networks.
    Soliman S
    Bull Math Biol; 2013 Nov; 75(11):2289-303. PubMed ID: 24048547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Algebraic Systems Biology: A Case Study for the Wnt Pathway.
    Gross E; Harrington HA; Rosen Z; Sturmfels B
    Bull Math Biol; 2016 Jan; 78(1):21-51. PubMed ID: 26645985
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Joining and decomposing reaction networks.
    Gross E; Harrington H; Meshkat N; Shiu A
    J Math Biol; 2020 May; 80(6):1683-1731. PubMed ID: 32123964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An algebraic method to calculate parameter regions for constrained steady-state distribution in stochastic reaction networks.
    Vu TV; Hasegawa Y
    Chaos; 2019 Feb; 29(2):023123. PubMed ID: 30823706
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The geometry of the flux cone of a metabolic network.
    Wagner C; Urbanczik R
    Biophys J; 2005 Dec; 89(6):3837-45. PubMed ID: 16183876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oscillations in biochemical reaction networks arising from pairs of subnetworks.
    Mincheva M
    Bull Math Biol; 2011 Oct; 73(10):2277-304. PubMed ID: 21258969
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methodologies for the modeling and simulation of biochemical networks, illustrated for signal transduction pathways: a primer.
    ElKalaawy N; Wassal A
    Biosystems; 2015 Mar; 129():1-18. PubMed ID: 25637875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In silico evolution of functional modules in biochemical networks.
    Paladugu SR; Chickarmane V; Deckard A; Frumkin JP; McCormack M; Sauro HM
    Syst Biol (Stevenage); 2006 Jul; 153(4):223-35. PubMed ID: 16986624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Approximations and their consequences for dynamic modelling of signal transduction pathways.
    Millat T; Bullinger E; Rohwer J; Wolkenhauer O
    Math Biosci; 2007 May; 207(1):40-57. PubMed ID: 17070871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MAPK's networks and their capacity for multistationarity due to toric steady states.
    Pérez Millán M; Turjanski AG
    Math Biosci; 2015 Apr; 262():125-37. PubMed ID: 25640872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multistationarity questions in reduced versus extended biochemical networks.
    Dickenstein A; Giaroli M; Pérez Millán M; Rischter R
    J Math Biol; 2024 Jun; 89(2):18. PubMed ID: 38914780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New approaches to modelling and analysis of biochemical reactions, pathways and networks.
    Crampin EJ; Schnell S
    Prog Biophys Mol Biol; 2004 Sep; 86(1):1-4. PubMed ID: 15261523
    [No Abstract]   [Full Text] [Related]  

  • 20. Automatic analysis of computation in biochemical reactions.
    Egri-Nagy A; Nehaniv CL; Rhodes JL; Schilstra MJ
    Biosystems; 2008; 94(1-2):126-34. PubMed ID: 18606208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.