These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 1885598)
1. Carbocyclic substrates for de novo purine biosynthesis. Liu DS; Caperelli CA J Biol Chem; 1991 Sep; 266(25):16699-702. PubMed ID: 1885598 [TBL] [Abstract][Full Text] [Related]
2. Carbocyclic substrates for de novo purine biosynthesis. Enantiospecific synthesis and enantiospecificity of enzymatic utilization. Caperelli CA; Liu D J Biol Chem; 1992 May; 267(14):9783-7. PubMed ID: 1577812 [TBL] [Abstract][Full Text] [Related]
3. A multifunctional protein possessing glycinamide ribonucleotide synthetase, glycinamide ribonucleotide transformylase, and aminoimidazole ribonucleotide synthetase activities in de novo purine biosynthesis. Daubner SC; Schrimsher JL; Schendel FJ; Young M; Henikoff S; Patterson D; Stubbe J; Benkovic SJ Biochemistry; 1985 Dec; 24(25):7059-62. PubMed ID: 4084560 [TBL] [Abstract][Full Text] [Related]
4. Substrate specificity of glycinamide ribonucleotide synthetase from chicken liver. Antle VD; Liu D; McKellar BR; Caperelli CA; Hua M; Vince R J Biol Chem; 1996 Apr; 271(14):8192-5. PubMed ID: 8626510 [TBL] [Abstract][Full Text] [Related]
5. The human trifunctional enzyme of de novo purine biosynthesis: heterologous expression, purification, and preliminary characterization. Poch MT; Qin W; Caperelli CA Protein Expr Purif; 1998 Feb; 12(1):17-24. PubMed ID: 9473452 [TBL] [Abstract][Full Text] [Related]
6. Linkage between toxin production and purine biosynthesis in Clostridium difficile. Maegawa T; Karasawa T; Ohta T; Wang X; Kato H; Hayashi H; Nakamura S J Med Microbiol; 2002 Jan; 51(1):34-41. PubMed ID: 11800470 [TBL] [Abstract][Full Text] [Related]
7. De novo purine nucleotide biosynthesis: cloning of human and avian cDNAs encoding the trifunctional glycinamide ribonucleotide synthetase-aminoimidazole ribonucleotide synthetase-glycinamide ribonucleotide transformylase by functional complementation in E. coli. Aimi J; Qiu H; Williams J; Zalkin H; Dixon JE Nucleic Acids Res; 1990 Nov; 18(22):6665-72. PubMed ID: 2147474 [TBL] [Abstract][Full Text] [Related]
8. Investigation of the mechanism of phosphoribosylamine transfer from glutamine phosphoribosylpyrophosphate amidotransferase to glycinamide ribonucleotide synthetase. Rudolph J; Stubbe J Biochemistry; 1995 Feb; 34(7):2241-50. PubMed ID: 7532005 [TBL] [Abstract][Full Text] [Related]
9. Glycinamide ribonucleotide synthetase from Escherichia coli: cloning, overproduction, sequencing, isolation, and characterization. Cheng YS; Shen Y; Rudolph J; Stern M; Stubbe J; Flannigan KA; Smith JM Biochemistry; 1990 Jan; 29(1):218-27. PubMed ID: 2182115 [TBL] [Abstract][Full Text] [Related]
10. X-ray crystal structure of aminoimidazole ribonucleotide synthetase (PurM), from the Escherichia coli purine biosynthetic pathway at 2.5 A resolution. Li C; Kappock TJ; Stubbe J; Weaver TM; Ealick SE Structure; 1999 Sep; 7(9):1155-66. PubMed ID: 10508786 [TBL] [Abstract][Full Text] [Related]
11. Substrate specificity of glycinamide ribonucleotide transformylase from chicken liver. Antle VD; Liu D; McKellars BR; Caperelli CA; Hua M; Vince R J Biol Chem; 1996 Mar; 271(11):6045-9. PubMed ID: 8626389 [TBL] [Abstract][Full Text] [Related]
12. Carbocyclic glycinamide ribonucleotide is a substrate for glycinamide ribonucleotide transformylase. Caperelli CA; Price MF Arch Biochem Biophys; 1988 Jul; 264(1):340-2. PubMed ID: 3395127 [TBL] [Abstract][Full Text] [Related]
13. Crystal structures of human GAR Tfase at low and high pH and with substrate beta-GAR. Zhang Y; Desharnais J; Greasley SE; Beardsley GP; Boger DL; Wilson IA Biochemistry; 2002 Dec; 41(48):14206-15. PubMed ID: 12450384 [TBL] [Abstract][Full Text] [Related]
14. The human GARS-AIRS-GART gene encodes two proteins which are differentially expressed during human brain development and temporally overexpressed in cerebellum of individuals with Down syndrome. Brodsky G; Barnes T; Bleskan J; Becker L; Cox M; Patterson D Hum Mol Genet; 1997 Nov; 6(12):2043-50. PubMed ID: 9328467 [TBL] [Abstract][Full Text] [Related]
15. Molecular characterization of Arabidopsis thaliana cDNAs encoding three purine biosynthetic enzymes. Schnorr KM; Nygaard P; Laloue M Plant J; 1994 Jul; 6(1):113-21. PubMed ID: 7920700 [TBL] [Abstract][Full Text] [Related]
16. Purine biosynthesis in archaea: variations on a theme. Brown AM; Hoopes SL; White RH; Sarisky CA Biol Direct; 2011 Dec; 6():63. PubMed ID: 22168471 [TBL] [Abstract][Full Text] [Related]
17. Substrate specificity of human glycinamide ribonucleotide transformylase. Antle VD; Donat N; Hua M; Liao PL; Vince R; Carperelli CA Arch Biochem Biophys; 1999 Oct; 370(2):231-5. PubMed ID: 10577357 [TBL] [Abstract][Full Text] [Related]
18. Gene dosage effect for glycinamide ribonucleotide synthetase in human fibroblasts trisomic for chromosome 21. Bartley JA; Epstein CJ Biochem Biophys Res Commun; 1980 Apr; 93(4):1286-9. PubMed ID: 6446912 [No Abstract] [Full Text] [Related]
20. Mouse cDNAs encoding a trifunctional protein of de novo purine synthesis and a related single-domain glycinamide ribonucleotide synthetase. Kan JL; Jannatipour M; Taylor SM; Moran RG Gene; 1993 Dec; 137(2):195-202. PubMed ID: 8299947 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]