These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
77 related articles for article (PubMed ID: 188653)
1. Difficulties in determining accurate molecular motion parameters from proton relaxation enhancement measurements as illustrated by the immunoglobulin G-Gd(III) system. Burton DR; Forsén S; Karlström G; Dwek RA; McLaughlin AC; Wain-Hobson S Eur J Biochem; 1976 Dec; 71(2):519-28. PubMed ID: 188653 [TBL] [Abstract][Full Text] [Related]
2. The determination of molecular-motion parameters from proton-relaxation-enhancement measurements in a number of Gd(III) - antibody-fragment complexes. A comparative study. Burton DR; Forsén S; Karlström G; Dwek RA; McLaughlin AC; Wain-Hobson S Eur J Biochem; 1977 May; 75(2):445-53. PubMed ID: 560299 [TBL] [Abstract][Full Text] [Related]
3. A novel approach to water proton relaxation in paramagnetic ion-macromolecule complexes. Burton DR; Dwek RA; Forsén S; Karlström G Biochemistry; 1977 Jan; 16(2):250-4. PubMed ID: 836785 [TBL] [Abstract][Full Text] [Related]
4. The binding of lanthanides to non-immune rabbit immunoglobulin G and its fragments. Dower SK; Dwek RA; McLaughlin AC; Mole LE; Press EM; Sunderland CA Biochem J; 1975 Jul; 149(1):73-82. PubMed ID: 242326 [TBL] [Abstract][Full Text] [Related]
5. The use of gadolinium as a probe in the Fc region of a homogeneous anti-(type-III pneumococcal polysaccharide) antibody. Willan KJ; Wallace KH; Jaton JC; Dwek RA Biochem J; 1977 Feb; 161(2):205-11. PubMed ID: 15542 [TBL] [Abstract][Full Text] [Related]
6. Electron spin resonance and magnetic relaxation studies of gadolinium(III) complexes with human transferrin. O'Hara PB; Koenig SH Biochemistry; 1986 Mar; 25(6):1445-50. PubMed ID: 3008831 [TBL] [Abstract][Full Text] [Related]
7. Unexpected aggregation of neutral, xylene-cored dinuclear GdIII chelates in aqueous solution. Costa J; Balogh E; Turcry V; Tripier R; Le Baccon M; Chuburu F; Handel H; Helm L; Tóth E; Merbach AE Chemistry; 2006 Sep; 12(26):6841-51. PubMed ID: 16770815 [TBL] [Abstract][Full Text] [Related]
9. Interactions of the lanthanide- and hapten-binding sites in the Fv fragment from the myeloma protein MOPC 315. Dwek RA; Givol D; Jones R; McLaughlin AC; Wain-Hobson S; White AI; Wright C Biochem J; 1976 Apr; 155(1):37-53. PubMed ID: 7239 [TBL] [Abstract][Full Text] [Related]
10. Macrocyclic Gd3+ chelates attached to a silsesquioxane core as potential magnetic resonance imaging contrast agents: synthesis, physicochemical characterization, and stability studies. Henig J; Tóth E; Engelmann J; Gottschalk S; Mayer HA Inorg Chem; 2010 Jul; 49(13):6124-38. PubMed ID: 20527901 [TBL] [Abstract][Full Text] [Related]
11. Physicochemical characterization of the dimeric lanthanide complexes [en{Ln(DO3A)(H2O)}2] and [pi{Ln(DTTA)(H2O)}2]2-: a variable-temperature 17O NMR study. Lee TM; Cheng TH; Ou MH; Chang CA; Liu GC; Wang YM Magn Reson Chem; 2004 Mar; 42(3):329-36. PubMed ID: 14971018 [TBL] [Abstract][Full Text] [Related]
12. Temperature and requency dependence of solvent proton relaxation rates in solutions of manganese(II) carbonic anhydrase. Lanir A; Gradstajn S; Navon G Biochemistry; 1975 Jan; 14(2):242-8. PubMed ID: 235272 [TBL] [Abstract][Full Text] [Related]
13. Equilibrium and NMR relaxometric studies on the s-triazine-based heptadentate ligand PTDITA showing high selectivity for Gd3+ ions. Baranyai Z; Tei L; Giovenzana GB; Kálmán FK; Botta M Inorg Chem; 2012 Feb; 51(4):2597-607. PubMed ID: 22313334 [TBL] [Abstract][Full Text] [Related]
14. Zero field splitting fluctuations induced phase relaxation of Gd3+ in frozen solutions at cryogenic temperatures. Raitsimring A; Dalaloyan A; Collauto A; Feintuch A; Meade T; Goldfarb D J Magn Reson; 2014 Nov; 248():71-80. PubMed ID: 25442776 [TBL] [Abstract][Full Text] [Related]
15. Magnetic resonance studies on the mitochondrial divalent cation carrier. Case GD Biochim Biophys Acta; 1975 Jan; 375(1):69-86. PubMed ID: 163099 [TBL] [Abstract][Full Text] [Related]
16. High-resolution field-cycling NMR studies of a DNA octamer as a probe of phosphodiester dynamics and comparison with computer simulation. Roberts MF; Cui Q; Turner CJ; Case DA; Redfield AG Biochemistry; 2004 Mar; 43(12):3637-50. PubMed ID: 15035634 [TBL] [Abstract][Full Text] [Related]
17. Tryptophan sidechain dynamics in hydrophobic oligopeptides determined by use of 13C nuclear magnetic resonance spectroscopy. Weaver AJ; Kemple MD; Prendergast FG Biophys J; 1988 Jul; 54(1):1-15. PubMed ID: 3416021 [TBL] [Abstract][Full Text] [Related]
18. A nuclear magnetic resonance study of the heme environment in beef liver catalase. Lanir A; Schejter A Biochemistry; 1976 Jun; 15(12):2590-6. PubMed ID: 945745 [TBL] [Abstract][Full Text] [Related]
19. Rotational and translational water diffusion in the hemoglobin hydration shell: dielectric and proton nuclear relaxation measurements. Steinhoff HJ; Kramm B; Hess G; Owerdieck C; Redhardt A Biophys J; 1993 Oct; 65(4):1486-95. PubMed ID: 8274642 [TBL] [Abstract][Full Text] [Related]
20. Albumin binding, relaxivity, and water exchange kinetics of the diastereoisomers of MS-325, a gadolinium(III)-based magnetic resonance angiography contrast agent. Caravan P; Parigi G; Chasse JM; Cloutier NJ; Ellison JJ; Lauffer RB; Luchinat C; McDermid SA; Spiller M; McMurry TJ Inorg Chem; 2007 Aug; 46(16):6632-9. PubMed ID: 17625839 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]