These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 1886943)

  • 21. Photodestruction in vitro of tumour cells sensitized by porphyrins and their conjugates with specific antibodies.
    Papkovskii DB; Savitskii AP; Egorova SG; Sukhin GM; Chissov VI; Krasnovskii AA; Egorov SYu ; Ponomarev GV; Kirillova GV
    Biomed Sci; 1990 Apr; 1(4):401-6. PubMed ID: 2133059
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Photophysical and redox properties of a series of phthalocyanines: relation with their photodynamic activities on TF-1 and Daudi leukemic cells.
    Daziano JP; Steenken S; Chabannon C; Mannoni P; Chanon M; Julliard M
    Photochem Photobiol; 1996 Oct; 64(4):712-9. PubMed ID: 8863479
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Targeting Cancer Cells with Photoactive Silica Nanoparticles.
    Borzęcka W; Trindade T; Torres T; Tomé J
    Curr Pharm Des; 2016; 22(39):6021-6038. PubMed ID: 27306094
    [TBL] [Abstract][Full Text] [Related]  

  • 24. New phthalocyanine photosensitizers for photodynamic therapy.
    Oleinick NL; Antunez AR; Clay ME; Rihter BD; Kenney ME
    Photochem Photobiol; 1993 Feb; 57(2):242-7. PubMed ID: 8451285
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Photodynamic therapy: new applications in skin cancer.
    Oncology (Williston Park); 1993 May; 7(5):62. PubMed ID: 8512786
    [No Abstract]   [Full Text] [Related]  

  • 26. [Preferential tumoral phototoxicity of chloroaluminum phthalocyanine in photodynamic therapy of human leukemic cells].
    Daziano JP; Humeau L; Chabannon C; Mannoni P; Julliard M
    C R Seances Soc Biol Fil; 1995; 189(3):407-17. PubMed ID: 8521089
    [No Abstract]   [Full Text] [Related]  

  • 27. Cell death pathways and phthalocyanine as an efficient agent for photodynamic cancer therapy.
    Mfouo-Tynga I; Abrahamse H
    Int J Mol Sci; 2015 May; 16(5):10228-41. PubMed ID: 25955645
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Aluminium phthalocyanines-induced photolysis of human vascular wall cells in culture and the effect of fluoride on photodynamic action.
    Dartsch PC; Wunderlich K; Ben-Hur E
    Coron Artery Dis; 1994 Oct; 5(10):851-5. PubMed ID: 7866605
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Correlation of distribution of sulphonated aluminium phthalocyanines with their photodynamic effect in tumour and skin of mice bearing CaD2 mammary carcinoma.
    Peng Q; Moan J
    Br J Cancer; 1995 Sep; 72(3):565-74. PubMed ID: 7669563
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of sulfonated aluminum phthalocyanines for use in photochemotherapy. A study on the relative efficiencies of photoinactivation.
    Berg K; Bommer JC; Moan J
    Photochem Photobiol; 1989 May; 49(5):587-94. PubMed ID: 2755994
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Phthalocyanines as photosensitizers in the photodynamic method of the treatment of neoplasms].
    Kwaśny M
    Postepy Hig Med Dosw; 1991; 45(3-4):245-57. PubMed ID: 1946094
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhanced tumour selectivity of photodynamic therapy in the rat colon using a radioprotective agent.
    Bedwell J; Chatlani PT; MacRobert AJ; Roberts JE; Barr H; Dillon J; Bown SG
    Photochem Photobiol; 1991 Jun; 53(6):753-6. PubMed ID: 1653426
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The possible role of ionic species in selective biodistribution of photochemotherapeutic agents toward neoplastic tissue.
    Pottier R; Kennedy JC
    J Photochem Photobiol B; 1990 Dec; 8(1):1-16. PubMed ID: 2127428
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Porphyrins as radiosensitizing agents for solid neoplasms.
    Schaffer M; Ertl-Wagner B; Schaffer PM; Kulka U; Hofstetter A; Dühmke E; Jori G
    Curr Pharm Des; 2003; 9(25):2024-35. PubMed ID: 14529413
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Y1068 phosphorylation is the most sensitive target of disulfonated tetraphenylporphyrin-based photodynamic therapy on epidermal growth factor receptor.
    Weyergang A; Selbo PK; Berg K
    Biochem Pharmacol; 2007 Jul; 74(2):226-35. PubMed ID: 17531956
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fluorescence formation during photodynamic therapy in the nucleus of cells incubated with cationic and anionic water-soluble photosensitizers.
    Rück A; Köllner T; Dietrich A; Strauss W; Schneckenburger H
    J Photochem Photobiol B; 1992 Mar; 12(4):403-12. PubMed ID: 1578298
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Calcium-dependent photodynamic action of di- and tetrasulphonated aluminium phthalocyanine on normal and tumour-derived rat pancreatic exocrine cells.
    al-Laith M; Matthews EK
    Br J Cancer; 1994 Nov; 70(5):893-9. PubMed ID: 7524603
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The phthalocyanines: a new class of mammalian cells photosensitizers with a potential for cancer phototherapy.
    Ben-Hur E; Rosenthal I
    Int J Radiat Biol Relat Stud Phys Chem Med; 1985 Feb; 47(2):145-7. PubMed ID: 3872269
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Photohemolysis of human erythrocytes induced by aluminum phthalocyanine tetrasulfonate.
    Ben-Hur E; Rosenthal I
    Cancer Lett; 1986 Mar; 30(3):321-7. PubMed ID: 3697950
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthesis and in vitro photodynamic activity of new hexadeca-carboxy phthalocyanines.
    Choi CF; Tsang PT; Huang JD; Chan EY; Ko WH; Fong WP; Ng DK
    Chem Commun (Camb); 2004 Oct; (19):2236-7. PubMed ID: 15467889
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.