These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 1887218)

  • 1. HRR25, a putative protein kinase from budding yeast: association with repair of damaged DNA.
    Hoekstra MF; Liskay RM; Ou AC; DeMaggio AJ; Burbee DG; Heffron F
    Science; 1991 Aug; 253(5023):1031-4. PubMed ID: 1887218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of the casein kinase I isoform, Hrr25, and the cell cycle-regulatory transcription factor, SBF, in the transcriptional response to DNA damage in Saccharomyces cerevisiae.
    Ho Y; Mason S; Kobayashi R; Hoekstra M; Andrews B
    Proc Natl Acad Sci U S A; 1997 Jan; 94(2):581-6. PubMed ID: 9012827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The inactive form of a yeast casein kinase I suppresses the secretory defect of the sec12 mutant. Implication of negative regulation by the Hrr25 kinase in the vesicle budding from the endoplasmic reticulum.
    Murakami A; Kimura K; Nakano A
    J Biol Chem; 1999 Feb; 274(6):3804-10. PubMed ID: 9920934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The budding yeast HRR25 gene product is a casein kinase I isoform.
    DeMaggio AJ; Lindberg RA; Hunter T; Hoekstra MF
    Proc Natl Acad Sci U S A; 1992 Aug; 89(15):7008-12. PubMed ID: 1495994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An essential gene, ESR1, is required for mitotic cell growth, DNA repair and meiotic recombination in Saccharomyces cerevisiae.
    Kato R; Ogawa H
    Nucleic Acids Res; 1994 Aug; 22(15):3104-12. PubMed ID: 8065923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Roles of Budding Yeast Hrr25 in Recombination and Sporulation.
    Lee MS; Joo JH; Kim K
    J Microbiol Biotechnol; 2017 Jun; 27(6):1198-1203. PubMed ID: 28335590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Saccharomyces cerevisiae RAD52 alleles temperature-sensitive for the repair of DNA double-strand breaks.
    Kaytor MD; Livingston DM
    Genetics; 1994 Aug; 137(4):933-44. PubMed ID: 7982574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. STE11 is a protein kinase required for cell-type-specific transcription and signal transduction in yeast.
    Rhodes N; Connell L; Errede B
    Genes Dev; 1990 Nov; 4(11):1862-74. PubMed ID: 2276621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A synthetic lethal screen identifies SLK1, a novel protein kinase homolog implicated in yeast cell morphogenesis and cell growth.
    Costigan C; Gehrung S; Snyder M
    Mol Cell Biol; 1992 Mar; 12(3):1162-78. PubMed ID: 1545797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Casein Kinase I Isoform Hrr25 Is a Negative Regulator of Haa1 in the Weak Acid Stress Response Pathway in Saccharomyces cerevisiae.
    Collins ME; Black JJ; Liu Z
    Appl Environ Microbiol; 2017 Jul; 83(13):. PubMed ID: 28432100
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A newly identified DNA ligase of Saccharomyces cerevisiae involved in RAD52-independent repair of DNA double-strand breaks.
    Schär P; Herrmann G; Daly G; Lindahl T
    Genes Dev; 1997 Aug; 11(15):1912-24. PubMed ID: 9271115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular characterization of the yeast meiotic regulatory gene RIM1.
    Su SS; Mitchell AP
    Nucleic Acids Res; 1993 Aug; 21(16):3789-97. PubMed ID: 8367297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutant casein kinase I (Hrr25p/Kti14p) abrogates the G1 cell cycle arrest induced by Kluyveromyces lactiszymocin in budding yeast.
    Mehlgarten C; Schaffrath R
    Mol Genet Genomics; 2003 May; 269(2):188-96. PubMed ID: 12756531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation of a novel protein kinase-encoding gene from yeast by oligodeoxyribonucleotide probing.
    Jones DG; Rosamond J
    Gene; 1990 May; 90(1):87-92. PubMed ID: 2199332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suppression of Escherichia coli alkB mutants by Saccharomyces cerevisiae genes.
    Wei YF; Chen BJ; Samson L
    J Bacteriol; 1995 Sep; 177(17):5009-15. PubMed ID: 7665478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cloning and characterization of DST2, the gene for DNA strand transfer protein beta from Saccharomyces cerevisiae.
    Dykstra CC; Kitada K; Clark AB; Hamatake RK; Sugino A
    Mol Cell Biol; 1991 May; 11(5):2583-92. PubMed ID: 1850100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cloning and nucleotide sequence of the gene for protein X from Saccharomyces cerevisiae.
    Behal RH; Browning KS; Hall TB; Reed LJ
    Proc Natl Acad Sci U S A; 1989 Nov; 86(22):8732-6. PubMed ID: 2682658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of the Saccharomyces cerevisiae Hrr25:Mam1 monopolin subcomplex reveals a novel kinase regulator.
    Ye Q; Ur SN; Su TY; Corbett KD
    EMBO J; 2016 Oct; 35(19):2139-2151. PubMed ID: 27491543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prenylated isoforms of yeast casein kinase I, including the novel Yck3p, suppress the gcs1 blockage of cell proliferation from stationary phase.
    Wang X; Hoekstra MF; DeMaggio AJ; Dhillon N; Vancura A; Kuret J; Johnston GC; Singer RA
    Mol Cell Biol; 1996 Oct; 16(10):5375-85. PubMed ID: 8816449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pie1, a protein interacting with Mec1, controls cell growth and checkpoint responses in Saccharomyces cerevisiae.
    Wakayama T; Kondo T; Ando S; Matsumoto K; Sugimoto K
    Mol Cell Biol; 2001 Feb; 21(3):755-64. PubMed ID: 11154263
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.