These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 1887510)

  • 1. Theoretical predictions of the acoustic pressure generated by a shock wave lithotripter.
    Coleman AJ; Choi MJ; Saunders JE
    Ultrasound Med Biol; 1991; 17(3):245-55. PubMed ID: 1887510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling the Dornier HM3 lithotripter.
    Christopher T
    J Acoust Soc Am; 1994 Nov; 96(5 Pt 1):3088-95. PubMed ID: 7983282
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Extracorporeal shock wave lithotripsy using Dornier modified HM3 lithotripter comparison with the results by Dornier HM3 lithotripter].
    Sugiyama T; Itho M; Katho N; Sahashi M; Watanabe J; Yamada S; Kamihira O; Mizutani K; Ono Y
    Nihon Hinyokika Gakkai Zasshi; 1991 Mar; 82(3):462-6. PubMed ID: 2072608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An experimental shock wave generator for lithotripsy studies.
    Coleman AJ; Saunders JE; Choi MJ
    Phys Med Biol; 1989 Nov; 34(11):1733-42. PubMed ID: 2587631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Independent assessment of a wide-focus, low-pressure electromagnetic lithotripter: absence of renal bioeffects in the pig.
    Evan AP; McAteer JA; Connors BA; Pishchalnikov YA; Handa RK; Blomgren P; Willis LR; Williams JC; Lingeman JE; Gao S
    BJU Int; 2008 Feb; 101(3):382-8. PubMed ID: 17922871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The acoustic fields of the Wolf electrohydraulic lithotripter.
    Campbell DS; Flynn HG; Blackstock DT; Linke C; Carstensen EL
    J Lithotr Stone Dis; 1991 Apr; 3(2):147-56. PubMed ID: 10149155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Urolithiasis--a change in therapeutic methods extracorporeal shock wave lithotripsy using a Dornier kidney lithotripter HM3].
    Yamamoto K; Kishimoto T; Sakamoto W; Sugimoto T; Iimori H; Kanasawa T; Wada S; Senju M; Nakatani T; Sugimura K
    Hinyokika Kiyo; 1989 Dec; 35(12):2093-8. PubMed ID: 2618909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling of an electrohydraulic lithotripter with the KZK equation.
    Averkiou MA; Cleveland RO
    J Acoust Soc Am; 1999 Jul; 106(1):102-12. PubMed ID: 10420620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A survey of the acoustic output of commercial extracorporeal shock wave lithotripters.
    Coleman AJ; Saunders JE
    Ultrasound Med Biol; 1989; 15(3):213-27. PubMed ID: 2741250
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A performance analysis of an extracorporeal shock wave lithotripter: spatial pressure distribution and the effects of lithotripter voltage, electrode life, and tissue attenuation.
    Monaghan P; Gilbert JL; Prystowsky JB
    J Stone Dis; 1992 Oct; 4(4):289-300. PubMed ID: 10147810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pressure waveforms generated by a Dornier extra-corporeal shock-wave lithotripter.
    Coleman AJ; Saunders JE; Preston RC; Bacon DR
    Ultrasound Med Biol; 1987 Oct; 13(10):651-7. PubMed ID: 3686729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Extracorporeal lithotripsy using the HM3 Dornier lithotriptor and the modified HM3 lithotriptor].
    Zanetti G; Montanari E; Mazza L; Ceresoli A; Mandressi A; Pisani E
    Arch Ital Urol Nefrol Androl; 1989 Dec; 61(4):367-72. PubMed ID: 2532400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Suppression of large intraluminal bubble expansion in shock wave lithotripsy without compromising stone comminution: methodology and in vitro experiments.
    Zhong P; Zhou Y
    J Acoust Soc Am; 2001 Dec; 110(6):3283-91. PubMed ID: 11785829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acoustic emission and sonoluminescence due to cavitation at the beam focus of an electrohydraulic shock wave lithotripter.
    Coleman AJ; Choi MJ; Saunders JE; Leighton TG
    Ultrasound Med Biol; 1992; 18(3):267-81. PubMed ID: 1595133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Size and location of defects at the coupling interface affect lithotripter performance.
    Li G; Williams JC; Pishchalnikov YA; Liu Z; McAteer JA
    BJU Int; 2012 Dec; 110(11 Pt C):E871-7. PubMed ID: 22938566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of reflector geometry on the acoustic field and bubble dynamics produced by an electrohydraulic shock wave lithotripter.
    Zhou Y; Zhong P
    J Acoust Soc Am; 2006 Jun; 119(6):3625-36. PubMed ID: 16838506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Beamwidth measurement of individual lithotripter shock waves.
    Kreider W; Bailey MR; Ketterling JA
    J Acoust Soc Am; 2009 Feb; 125(2):1240-5. PubMed ID: 19206897
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conversion of an HM3 lithotripter into a research device.
    Loske AM; Méndez A; Fernández F; Busch H; Granizo M; Prieto FE
    J Endourol; 2003 Nov; 17(9):709-17. PubMed ID: 14642027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A theoretical study of cavitation generated by an extracorporeal shock wave lithotripter.
    Church CC
    J Acoust Soc Am; 1989 Jul; 86(1):215-27. PubMed ID: 2754108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduction of tissue injury in shock-wave lithotripsy by using an acoustic diode.
    Zhu S; Dreyer T; Liebler M; Riedlinger R; Preminger GM; Zhong P
    Ultrasound Med Biol; 2004 May; 30(5):675-82. PubMed ID: 15183234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.