BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 1887665)

  • 1. Toward the locomotion of two contemporaneous Adapis species.
    Godinot M
    Z Morphol Anthropol; 1991; 78(3):387-405. PubMed ID: 1887665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Morphological functional analysis of the femora and tibiae of Quercy "Adapis": recognition of five morphological types].
    Bacon AM; Godinot M
    Folia Primatol (Basel); 1998; 69(1):1-21. PubMed ID: 9463088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systematic and locomotor diversification of the Adapis group (Primates, Adapiformes) in the late Eocene of the Quercy (Southwest France), revealed by humeral remains.
    Marigó J; Verrière N; Godinot M
    J Hum Evol; 2019 Jan; 126():71-90. PubMed ID: 30583845
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proximal femoral anatomy of a sivaladapid primate from the late middle Eocene Pondaung formation (central Myanmar).
    Marivaux L; Beard KC; Chaimanee Y; Jaeger JJ; Marandat B; Soe AN; Tun ST; Kyaw AA
    Am J Phys Anthropol; 2008 Nov; 137(3):263-73. PubMed ID: 18524008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Eocene Paleoecology of Adapis parisiensis (Primate, Adapidae): From Inner Ear to Lifestyle.
    Bernardi M; Couette S
    Anat Rec (Hoboken); 2017 Sep; 300(9):1576-1588. PubMed ID: 28452186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional morphology of the postcranium and locomotor behavior of Neosaimiri fieldsi, a Saimiri-like Middle Miocene platyrrhine.
    Nakatsukasa M; Takai M; Setoguchi T
    Am J Phys Anthropol; 1997 Apr; 102(4):515-44. PubMed ID: 9140542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Primate limb bones and locomotor types in arboreal or terrestrial environments.
    Kimura T
    Z Morphol Anthropol; 2002 Mar; 83(2-3):201-19. PubMed ID: 12050893
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New pedal remains of Megaladapis and their functional significance.
    Wunderlich RE; Simons EL; Jungers WL
    Am J Phys Anthropol; 1996 May; 100(1):115-39. PubMed ID: 8859959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Talar morphology, phylogenetic affinities, and locomotor adaptation of a large-bodied amphipithecid primate from the late middle eocene of Myanmar.
    Marivaux L; Beard KC; Chaimanee Y; Dagosto M; Gebo DL; Guy F; Marandat B; Khaing K; Kyaw AA; Oo M; Sein C; Soe AN; Swe M; Jaeger JJ
    Am J Phys Anthropol; 2010 Oct; 143(2):208-22. PubMed ID: 20853476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Locomotor adaptations as reflected on the humerus of paleogene primates.
    Szalay FS; Dagosto M
    Folia Primatol (Basel); 1980; 34(1-2):1-45. PubMed ID: 7002751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional anatomy of the limbs of erethizontidae (Rodentia, Caviomorpha): Indicators of locomotor behavior in Miocene porcupines.
    Candela AM; Picasso MB
    J Morphol; 2008 May; 269(5):552-93. PubMed ID: 18157864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The functional anatomy of the hindlimb of some African Viverridae (Carnivora).
    Taylor ME
    J Morphol; 1976 Feb; 148(2):227-54. PubMed ID: 1255730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative three-dimensional structure of the trabecular bone in the talus of primates and its relationship to ankle joint loads generated during locomotion.
    Hébert D; Lebrun R; Marivaux L
    Anat Rec (Hoboken); 2012 Dec; 295(12):2069-88. PubMed ID: 23109268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Additional postcranial remains of omomyid primates from the Uinta Formation, Utah and implications for the locomotor behavior of large-bodied omomyids.
    Dunn RH
    J Hum Evol; 2010 May; 58(5):406-17. PubMed ID: 20381124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hindlimb proportions, allometry, and biomechanics in Old World monkeys (primates, Cercopithecidae).
    Strasser E
    Am J Phys Anthropol; 1992 Feb; 87(2):187-213. PubMed ID: 1543245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of primate, carnivoran and rodent limb bone cross-sectional properties: are primates really unique?
    Polk JD; Demes B; Jungers WL; Biknevicius AR; Heinrich RE; Runestad JA
    J Hum Evol; 2000 Sep; 39(3):297-325. PubMed ID: 10964531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long bone articular and diaphyseal structure in old world monkeys and apes. I: locomotor effects.
    Ruff CB
    Am J Phys Anthropol; 2002 Dec; 119(4):305-42. PubMed ID: 12448016
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The calcaneus of Australopithecus afarensis and its implications for the evolution of bipedality.
    Latimer B; Lovejoy CO
    Am J Phys Anthropol; 1989 Mar; 78(3):369-86. PubMed ID: 2929741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New characters for the functional interpretation of primate scapulae and proximal humeri.
    Larson SG
    Am J Phys Anthropol; 1995 Sep; 98(1):13-35. PubMed ID: 8579188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural adaptations for gliding in mammals with implications for locomotor behavior in paromomyids.
    Runestad JA; Ruff CB
    Am J Phys Anthropol; 1995 Oct; 98(2):101-19. PubMed ID: 8644873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.