These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 1887825)

  • 1. Ascorbate uptake by ROS 17/2.8 osteoblast-like cells: substrate specificity and sensitivity to transport inhibitors.
    Dixon SJ; Kulaga A; Jaworski EM; Wilson JX
    J Bone Miner Res; 1991 Jun; 6(6):623-9. PubMed ID: 1887825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ascorbic acid transport in mouse and rat astrocytes is reversibly inhibited by furosemide, SITS, and DIDS.
    Wilson JX; Dixon SJ
    Neurochem Res; 1989 Dec; 14(12):1169-75. PubMed ID: 2628785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive regulation of ascorbate transport in osteoblastic cells.
    Dixon SJ; Wilson JX
    J Bone Miner Res; 1992 Jun; 7(6):675-81. PubMed ID: 1414486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport of monocarboxylic acids at the blood-brain barrier: studies with monolayers of primary cultured bovine brain capillary endothelial cells.
    Terasaki T; Takakuwa S; Moritani S; Tsuji A
    J Pharmacol Exp Ther; 1991 Sep; 258(3):932-7. PubMed ID: 1890627
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of two inhibitors of anion transport on bone resorption in organ culture.
    Klein-Nulend J; Raisz LG
    Endocrinology; 1989 Aug; 125(2):1019-24. PubMed ID: 2752962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition and stimulation of K+ transport across the frog erythrocyte membrane by furosemide, DIOA, DIDS and quinine.
    Gusev GP; Lapin AV; Agalakova NI
    Gen Physiol Biophys; 1999 Sep; 18(3):269-82. PubMed ID: 10703743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Na(+)-dependent glutamate transporter in human retinal pigment epithelial cells.
    Miyamoto Y; Del Monte MA
    Invest Ophthalmol Vis Sci; 1994 Sep; 35(10):3589-98. PubMed ID: 7916336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of chloride uptake in Drosophila Kc cells.
    Sherwood AC; John-Alder K; Sanders MM
    J Cell Physiol; 1988 Sep; 136(3):500-6. PubMed ID: 3170645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anion exchange pathways for Cl- transport in rabbit renal microvillus membranes.
    Karniski LP; Aronson PS
    Am J Physiol; 1987 Sep; 253(3 Pt 2):F513-21. PubMed ID: 3631282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of cell swelling of HeLa cells in an isosmotic Na(+)-free, high-K+ medium: study on the K+ transport pathways.
    Kaku M; Ikehara T; Yamaguchi H
    Tokushima J Exp Med; 1992 Jun; 39(1-2):45-53. PubMed ID: 1384168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of membrane proteins related to anion transport in Ehrlich ascites tumor cells.
    Hoffmann EK; Sjøholm C; Uerkvitz W
    Tokai J Exp Clin Med; 1982; 7 Suppl():103-11. PubMed ID: 7186216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chloride transport in embryonic cells: effect of ethanol and GABA.
    Zimmerman EF; Collins M
    Teratology; 1989 Dec; 40(6):593-601. PubMed ID: 2623646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of gossypol on erythrocyte membrane function: specific inhibition of inorganic anion exchange and interaction with band 3.
    Haspel HC; Corin RE; Sonenberg M
    J Pharmacol Exp Ther; 1985 Sep; 234(3):575-83. PubMed ID: 4032282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Requirement for Na(+)-dependent ascorbic acid transport in osteoblast function.
    Franceschi RT; Wilson JX; Dixon SJ
    Am J Physiol; 1995 Jun; 268(6 Pt 1):C1430-9. PubMed ID: 7611363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of anion transport in the passive movement of lead across the human red cell membrane.
    Simons TJ
    J Physiol; 1986 Sep; 378():287-312. PubMed ID: 3025431
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lactate transport in skeletal muscle cells: uptake in L6 myoblasts.
    Beaudry M; Duvallet A; Thieulart L; el Abida K; Rieu M
    Acta Physiol Scand; 1991 Mar; 141(3):379-81. PubMed ID: 1858508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bicarbonate sulfate exchange in canalicular rat liver plasma membrane vesicles.
    Meier PJ; Valantinas J; Hugentobler G; Rahm I
    Am J Physiol; 1987 Oct; 253(4 Pt 1):G461-8. PubMed ID: 3661708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-affinity sodium-dependent uptake of ascorbic acid by rat osteoblasts.
    Wilson JX; Dixon SJ
    J Membr Biol; 1989 Oct; 111(1):83-91. PubMed ID: 2810353
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of transport of riboflavin in rabbit intestinal brush border membrane vesicles.
    Said HM; Mohammadkhani R; McCloud E
    Proc Soc Exp Biol Med; 1993 Apr; 202(4):428-34. PubMed ID: 8456106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reversible and irreversible inhibition, by stilbenedisulphonates, of lactate transport into rat erythrocytes. Identification of some new high-affinity inhibitors.
    Poole RC; Halestrap AP
    Biochem J; 1991 Apr; 275 ( Pt 2)(Pt 2):307-12. PubMed ID: 2025218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.