These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
95 related articles for article (PubMed ID: 188848)
1. Regulation of amino acid and glucose transport activity expressed in isolated membranes from untransformed and SV 40-transformed mouse fibroblasts. Lever JE J Cell Physiol; 1976 Dec; 89(4):779-87. PubMed ID: 188848 [TBL] [Abstract][Full Text] [Related]
2. Amino acid transport by membrane vesicles of virally transformed and nontransformed cells: effects of sodium gradient and cell density. Parnes JR; Garvey TQ; Isselbacher KJ J Cell Physiol; 1976 Dec; 89(4):789-94. PubMed ID: 188849 [TBL] [Abstract][Full Text] [Related]
3. Regulation of active alpha-aminoisobutyric acid transport expressed in membrane vesicles from mouse fibroblasts. Lever JE Proc Natl Acad Sci U S A; 1976 Aug; 73(8):2614-8. PubMed ID: 183203 [TBL] [Abstract][Full Text] [Related]
4. Active amino acid transport in plasma membrane vesicles from Simian virus 40-transformed mouse fibroblasts. Characteristics of electrochemical Na+ gradient-stimulated uptake. Lever JE J Biol Chem; 1977 Mar; 252(6):1990-7. PubMed ID: 66232 [TBL] [Abstract][Full Text] [Related]
5. Uptake of alpha-aminoisobutyric acid and phosphate by membrane vesicles derived from growing and quiescent fibroblasts. Nilsen-Hamilton M; Hamilton RT J Cell Physiol; 1976 Dec; 89(4):795-800. PubMed ID: 188850 [TBL] [Abstract][Full Text] [Related]
6. Amino acid and 22Na+ uptake in membrane vesicles from confluent simian virus 40 transformed Balb/c3T3 and Balb/c3T3. Garvey TQ; Babcock A J Membr Biol; 1979 Aug; 49(2):139-56. PubMed ID: 226709 [TBL] [Abstract][Full Text] [Related]
7. Na+-electrochemical potential-mediated transport of D-glucose in renal brush border membrane vesicles. Sacktor B; Beck JC Curr Probl Clin Biochem; 1977 Oct 23-26; 8():159-69. PubMed ID: 616356 [TBL] [Abstract][Full Text] [Related]
8. Role of Na+ in alpha-aminoisobutyric acid uptake by membrane vesicles from mouse fibroblasts transformed by simian virus 40. Nishino H; Schiller RM; Parnes JR; Isselbacher KJ Proc Natl Acad Sci U S A; 1978 May; 75(5):2329-32. PubMed ID: 79182 [TBL] [Abstract][Full Text] [Related]
9. Differential growth sensitivity to 4-cis-hydroxy-L-proline of transformed rodent cell lines. Ciardiello F; Sanfilippo B; Yanagihara K; Kim N; Tortora G; Bassin RH; Kidwell WR; Salomon DS Cancer Res; 1988 May; 48(9):2483-91. PubMed ID: 2833347 [TBL] [Abstract][Full Text] [Related]
10. Neutral amino acid transport in surface membrane vesicles isolated from mouse fibroblasts: intrinsic and extrinsic models of regulation. Lever JE J Supramol Struct; 1977; 6(1):103-24. PubMed ID: 197316 [No Abstract] [Full Text] [Related]
11. Maturation of membrane function: transport of amino acid by rat erythroid cells. Wise WC J Cell Physiol; 1975 Dec; 87(2):199-201. PubMed ID: 1240104 [TBL] [Abstract][Full Text] [Related]
12. The relationship between cell surface protein and glucose and alpha-aminoisobutyrate transport in transformed chick and mouse cells. Yamada KM; Pastan I J Cell Physiol; 1976 Dec; 89(4):827-9. PubMed ID: 188852 [No Abstract] [Full Text] [Related]
13. Role of the membrane potential in serum-stimulated uptake of amino acid in a diploid human fibroblast. Vilereal ML; Cook JS J Supramol Struct; 1977; 6(2):179-89. PubMed ID: 909311 [TBL] [Abstract][Full Text] [Related]
14. Hexose and amino acid transport by chicken embryo fibroblasts infected with temperature-sensitive mutant of Rous sarcoma virus. Comparison of transport properties of whole cells and membrane vesicles. Inui KI; Tillotson LG; Isselbacher KJ Biochim Biophys Acta; 1980 Jun; 598(3):616-27. PubMed ID: 6248112 [TBL] [Abstract][Full Text] [Related]
15. Use of ionophores to study Na+ transport pathways in renal microvillus membrane vesicles. Aronson PS; Kinsella JL Fed Proc; 1981 Jun; 40(8):2213-7. PubMed ID: 6263713 [TBL] [Abstract][Full Text] [Related]
16. Characterization of sulfate, proline, and glucose transport systems in anterior cruciate and medial collateral ligament cells. Bhargava MM; Kinne-Saffran E; Kinne RK; Warren RF; Hannafin JA Can J Physiol Pharmacol; 2005 Nov; 83(11):1025-30. PubMed ID: 16391711 [TBL] [Abstract][Full Text] [Related]
17. Transport of potassium, amino acids, and glucose in cells transformed by Rous sarcoma virus. Weber MJ; Evans PK; Johnson MA; McNair TF; Nakamura KD; Salter DW Fed Proc; 1984 Jan; 43(1):107-12. PubMed ID: 6317462 [TBL] [Abstract][Full Text] [Related]
18. Sodium-stimulated alpha-aminoisobutyric acid transport by membrane vesicles from simian virus-transformed mouse cells. Hamilton RT; Nilsen-Hamilton M Proc Natl Acad Sci U S A; 1976 Jun; 73(6):1907-11. PubMed ID: 180527 [TBL] [Abstract][Full Text] [Related]
19. Sulfate-sodium cotransport by brush-border membrane vesicles isolated from rat ileum. Lücke H; Stange G; Murer H Gastroenterology; 1981 Jan; 80(1):22-30. PubMed ID: 6161060 [TBL] [Abstract][Full Text] [Related]
20. Characterization of sodium-dependent amino acid transport activity during liver regeneration. Fowler FC; Banks RK; Mailliard ME Hepatology; 1992 Nov; 16(5):1187-94. PubMed ID: 1427657 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]