These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 1888481)

  • 1. [Role of Corollospora maritima in the degradation and bioconversion of leaf material from Posidonia oceanica].
    De Feo V; Maiello D; Guarracino G
    Boll Soc Ital Biol Sper; 1991 Feb; 67(2):153-8. PubMed ID: 1888481
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lignocellulosic residues: biodegradation and bioconversion by fungi.
    Sánchez C
    Biotechnol Adv; 2009; 27(2):185-94. PubMed ID: 19100826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degradation of lignocellulosic material and humus formation by fungi.
    Mishra MM; Singh CP; Kapoor KK; Jain MK
    Ann Microbiol (Paris); 1979; 130 A(4):481-6. PubMed ID: 507620
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diversity, ecological role and potential biotechnological applications of marine fungi associated to the seagrass Posidonia oceanica.
    Panno L; Bruno M; Voyron S; Anastasi A; Gnavi G; Miserere L; Varese GC
    N Biotechnol; 2013 Sep; 30(6):685-94. PubMed ID: 23410985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Effect of cocultivating fungal species on the degradation of lignocellulose residues].
    Braga EJ; Uhart M; Diorio LA; Forchiassin F
    Rev Argent Microbiol; 2002; 34(1):39-44. PubMed ID: 11942082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of lignin content and temperature on the biodegradation of lignocellulose in composting conditions.
    Vikman M; Karjomaa S; Kapanen A; Wallenius K; Itävaara M
    Appl Microbiol Biotechnol; 2002 Aug; 59(4-5):591-8. PubMed ID: 12172631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of transgenic Bt maize residues on the mycotoxigenic plant pathogen Fusarium graminearum and the biocontrol agent Trichoderma atroviride.
    Naef A; Zesiger T; Défago G
    J Environ Qual; 2006; 35(4):1001-9. PubMed ID: 16738384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Antioxidant activity in fungi degrading lignocellulose substrates].
    Babitskaia VG; Shcherba VV
    Prikl Biokhim Mikrobiol; 2002; 38(2):169-73. PubMed ID: 11962215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FOLy: an integrated database for the classification and functional annotation of fungal oxidoreductases potentially involved in the degradation of lignin and related aromatic compounds.
    Levasseur A; Piumi F; Coutinho PM; Rancurel C; Asther M; Delattre M; Henrissat B; Pontarotti P; Asther M; Record E
    Fungal Genet Biol; 2008 May; 45(5):638-45. PubMed ID: 18308593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Straw bio-degradation by acidogenic bacteria and composite fungi.
    Zhang KQ; Chen XW; Ji M; Ning AR; Fan H; Zhou K
    J Environ Sci (China); 2004; 16(4):690-3. PubMed ID: 15495983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of lignocellulosic wastes for production of edible mushrooms.
    Rani P; Kalyani N; Prathiba K
    Appl Biochem Biotechnol; 2008 Dec; 151(2-3):151-9. PubMed ID: 18327544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large-scale identification of transcripts expressed in a symbiotic fungus (Termitomyces) during plant biomass degradation.
    Johjima T; Taprab Y; Noparatnaraporn N; Kudo T; Ohkuma M
    Appl Microbiol Biotechnol; 2006 Nov; 73(1):195-203. PubMed ID: 17021881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial community succession and lignocellulose degradation during agricultural waste composting.
    Yu H; Zeng G; Huang H; Xi X; Wang R; Huang D; Huang G; Li J
    Biodegradation; 2007 Dec; 18(6):793-802. PubMed ID: 17308882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Occurrence of mucous aggregates and their impact on Posidonia oceanica beds.
    Lorenti M; Buia MC; Di Martino V; Modigh M
    Sci Total Environ; 2005 Dec; 353(1-3):369-79. PubMed ID: 16209884
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endophytic fungal diversity of 2 sand dune wild legumes from the southwest coast of India.
    Seena S; Sridhar KR
    Can J Microbiol; 2004 Dec; 50(12):1015-21. PubMed ID: 15714232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cooperation between ligninolytic enzymes produced by superior mixed flora.
    Wang HL; Li ZY; Guo WY; Wang ZY; Pan F
    J Environ Sci (China); 2005; 17(4):620-2. PubMed ID: 16158591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phyto-bioconversion of hard coal in the Cynodon dactylon/coal rhizosphere.
    Igbinigie EE; Mutambanengwe CC; Rose PD
    Biotechnol J; 2010 Mar; 5(3):292-303. PubMed ID: 20084638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Legal protection is not enough: Posidonia oceanica meadows in marine protected areas are not healthier than those in unprotected areas of the northwest Mediterranean Sea.
    Montefalcone M; Albertelli G; Morri C; Parravicini V; Bianchi CN
    Mar Pollut Bull; 2009 Apr; 58(4):515-9. PubMed ID: 19150722
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biological pretreatment of softwood Pinus densiflora by three white rot fungi.
    Lee JW; Gwak KS; Park JY; Park MJ; Choi DH; Kwon M; Choi IG
    J Microbiol; 2007 Dec; 45(6):485-91. PubMed ID: 18176529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A glimpse of lignicolous marine fungi occurring in coastal water bodies of Tamil Nadu (India).
    Nambiar GR; Raveendran K; Changxing Z; Jaleel CA
    C R Biol; 2008 Jun; 331(6):475-80. PubMed ID: 18511000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.