These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 18885681)

  • 1. Metabolic conditions in Chlorella.
    MYERS J; CRAMER M
    J Gen Physiol; 1948 Sep; 32(1):103-10. PubMed ID: 18885681
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitrate reduction and assimilation in Chlorella.
    CRAMER M; MYERS J
    J Gen Physiol; 1948 Sep; 32(1):93-102. PubMed ID: 18885680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GAS EXCHANGE OF ALGAE. I. EFFECTS OF TIME, LIGHT INTENSITY, AND SPECTRAL-ENERGY DISTRIBUTION ON THE PHOTOSYNTHETIC QUOTIENT OF CHLORELLA PYRENOIDOSA.
    AMMANN EC; LYNCH VH
    Appl Microbiol; 1965 Jul; 13(4):546-51. PubMed ID: 14339260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of light intensity on nitrogen transformation, enzymatic activity, antioxidant system and transcriptional response of Chlorella pyrenoidosa during treating mariculture wastewater.
    Lu S; Chu G; Gao C; Zhao Y; Chen W; Jin C; Wang Q; Gao M
    Bioresour Technol; 2024 Apr; 397():130465. PubMed ID: 38373503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. OXIDATIVE ASSIMILATION IN RELATION TO PHOTOSYNTHESIS IN CHLORELLA.
    Myers J;
    J Gen Physiol; 1947 Jan; 30(3):217-27. PubMed ID: 19873489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Utilization of Exogenous Inorganic Carbon Species in Photosynthesis by Chlorella pyrenoidosa.
    Shelp BJ; Canvin DT
    Plant Physiol; 1980 May; 65(5):774-9. PubMed ID: 16661281
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of light on nitrate and nitrite assimilation by chlorella and ankistrodesmus.
    Morris L; Ahmed J
    Physiol Plant; 1969; 22(6):1166-74. PubMed ID: 20925666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mixotrophic metabolism of Chlorella sorokiniana and algal-bacterial consortia under extended dark-light periods and nutrient starvation.
    Alcántara C; Fernández C; García-Encina PA; Muñoz R
    Appl Microbiol Biotechnol; 2015 Mar; 99(5):2393-404. PubMed ID: 25341398
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CULTURE CONDITIONS AND THE DEVELOPMENT OF THE PHOTOSYNTHETIC MECHANISM : IV. INFLUENCE OF LIGHT INTENSITY ON PHOTOSYNTHETIC CHARACTERISTICS OF CHLORELLA.
    Myers J;
    J Gen Physiol; 1946 Jul; 29(6):429-40. PubMed ID: 19873471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of starch and lipid accumulation in a microalga Chlorella sorokiniana.
    Li T; Gargouri M; Feng J; Park JJ; Gao D; Miao C; Dong T; Gang DR; Chen S
    Bioresour Technol; 2015 Mar; 180():250-7. PubMed ID: 25616239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential effects of light on photosynthesis and nitrogen metabolism in Chlorella pyrenoidosa. SAM-TR-69-40.
    Cobb HD; Hall RH; Costello WJ
    Tech Rep SAM-TR; 1969 Aug; ():1-9. PubMed ID: 5308727
    [No Abstract]   [Full Text] [Related]  

  • 12. Carbon and nitrogen assimilation in relation to yield: mechanisms are the key to understanding production systems.
    Lawlor DW
    J Exp Bot; 2002 Apr; 53(370):773-87. PubMed ID: 11912221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluxes in central carbohydrate metabolism of source leaves in a fructan-storing C3 grass: rapid turnover and futile cycling of sucrose in continuous light under contrasted nitrogen nutrition status.
    Lattanzi FA; Ostler U; Wild M; Morvan-Bertrand A; Decau ML; Lehmeier CA; Meuriot F; Prud'homme MP; Schäufele R; Schnyder H
    J Exp Bot; 2012 Mar; 63(6):2363-75. PubMed ID: 22371080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pyridinic Nitrogen Doped Carbon Dots Supply Electrons to Improve Photosynthesis and Extracellular Electron Transfer of Chlorella pyrenoidosa.
    Huang X; Lin J; Liang J; Kou E; Cai W; Zheng Y; Zhang H; Zhang X; Liu Y; Li W; Lei B
    Small; 2023 Aug; 19(31):e2206222. PubMed ID: 36907994
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diel variation of the cellular carbon to nitrogen ratio of Chlorella autotrophica (Chlorophyta) growing in phosphorus- and nitrogen-limited continuous cultures.
    Ng WH; Liu H
    J Phycol; 2015 Feb; 51(1):82-92. PubMed ID: 26986260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of growth and measurement light intensities on temperature dependence of CO(2) assimilation rate in tobacco leaves.
    Yamori W; Evans JR; Von Caemmerer S
    Plant Cell Environ; 2010 Mar; 33(3):332-43. PubMed ID: 19895395
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exogenous 24-epibrassinolide (EBL) facilitates cell growth of Chlorella pyrenoidosa under high temperatures by enhancing the photosynthetic energy utilization and alleviating oxidative damage.
    Su F; Li Y
    J Phycol; 2024 Apr; 60(2):517-527. PubMed ID: 38451781
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gas exchange of algae. IV. Reliability of Chlorella pyrenoidosa.
    Ammann EC; Fraser-Smith A
    Appl Microbiol; 1968 May; 16(5):669-72. PubMed ID: 4385488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [The effect of light and temperature of the CO
    Schulze ED
    Oecologia; 1972 Sep; 9(3):235-258. PubMed ID: 28313125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A complete energy balance from photons to new biomass reveals a light- and nutrient-dependent variability in the metabolic costs of carbon assimilation.
    Jakob T; Wagner H; Stehfest K; Wilhelm C
    J Exp Bot; 2007; 58(8):2101-12. PubMed ID: 17483116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.