BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 1888723)

  • 21. The pH dependence of headgroup and acyl chain structure and dynamics of phosphatidylserine, studied by 2H-NMR.
    de Kroon AI; Timmermans JW; Killian JA; de Kruijff B
    Chem Phys Lipids; 1990 Apr; 54(1):33-42. PubMed ID: 2163285
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Islet Amyloid Polypeptide Membrane Interactions: Effects of Membrane Composition.
    Zhang X; St Clair JR; London E; Raleigh DP
    Biochemistry; 2017 Jan; 56(2):376-390. PubMed ID: 28054763
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cisplatin interaction with phosphatidylserine bilayer studied by solid-state NMR spectroscopy.
    Jensen M; Bjerring M; Nielsen NC; Nerdal W
    J Biol Inorg Chem; 2010 Feb; 15(2):213-23. PubMed ID: 19768472
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hydration of phospholipid bilayers in the presence and absence of cholesterol.
    Bach D; Miller IR
    Biochim Biophys Acta; 1998 Jan; 1368(2):216-24. PubMed ID: 9459599
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The membrane interaction of amphiphilic model peptides affects phosphatidylserine headgroup and acyl chain order and dynamics. Application of the "phospholipid headgroup electrometer" concept to phosphatidylserine.
    de Kroon AI; Killian JA; de Gier J; de Kruijff B
    Biochemistry; 1991 Jan; 30(4):1155-62. PubMed ID: 1989683
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluation of membrane models and their composition for islet amyloid polypeptide-membrane aggregation.
    Caillon L; Lequin O; Khemtémourian L
    Biochim Biophys Acta; 2013 Sep; 1828(9):2091-8. PubMed ID: 23707907
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Fourier transform infrared spectroscopic study of the interaction of alkaline earth cations with the negatively charged phospholipid 1, 2-dimyristoyl-sn-glycero-3-phosphoglycerol.
    Garidel P; Blume A; Hübner W
    Biochim Biophys Acta; 2000 Jun; 1466(1-2):245-59. PubMed ID: 10825446
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The molecular structure of a phosphatidylserine bilayer determined by scattering and molecular dynamics simulations.
    Pan J; Cheng X; Monticelli L; Heberle FA; Kučerka N; Tieleman DP; Katsaras J
    Soft Matter; 2014 Jun; 10(21):3716-25. PubMed ID: 24807693
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The influence of cholesterol on melittin lipidation in neutral membranes.
    Britt HM; Mosely JA; Sanderson JM
    Phys Chem Chem Phys; 2019 Jan; 21(2):631-640. PubMed ID: 30540307
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The interfacial structure of phospholipid bilayers: differential scanning calorimetry and Fourier transform infrared spectroscopic studies of 1,2-dipalmitoyl-sn-glycero-3-phosphorylcholine and its dialkyl and acyl-alkyl analogs.
    Lewis RN; Pohle W; McElhaney RN
    Biophys J; 1996 Jun; 70(6):2736-46. PubMed ID: 8744311
    [TBL] [Abstract][Full Text] [Related]  

  • 31. N-cholesteryl sphingomyelin-A synthetic sphingolipid with unique membrane properties.
    Sergelius C; Yamaguchi S; Yamamoto T; Slotte JP; Katsumura S
    Biochim Biophys Acta; 2011 Apr; 1808(4):1054-62. PubMed ID: 21194522
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Unquenchable Surface Potential Dramatically Enhances Cu(2+) Binding to Phosphatidylserine Lipids.
    Cong X; Poyton MF; Baxter AJ; Pullanchery S; Cremer PS
    J Am Chem Soc; 2015 Jun; 137(24):7785-92. PubMed ID: 26065920
    [TBL] [Abstract][Full Text] [Related]  

  • 33. pH-Dependent Membrane Interactions of the Histidine-Rich Cell-Penetrating Peptide LAH4-L1.
    Wolf J; Aisenbrey C; Harmouche N; Raya J; Bertani P; Voievoda N; Süss R; Bechinger B
    Biophys J; 2017 Sep; 113(6):1290-1300. PubMed ID: 28734478
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A new infrared spectroscopoic marker for cochleate phases in phosphatidylserine-containing model membranes.
    Flach CR; Mendelsohn R
    Biophys J; 1993 Apr; 64(4):1113-21. PubMed ID: 8494975
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ca2+, Mg2+, Li+, Na+, and K+ distributions in the headgroup region of binary membranes of phosphatidylcholine and phosphatidylserine as seen by deuterium NMR.
    Roux M; Bloom M
    Biochemistry; 1990 Jul; 29(30):7077-89. PubMed ID: 2223761
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of hydrostatic pressure on water penetration and rotational dynamics in phospholipid-cholesterol bilayers.
    Bernsdorff C; Wolf A; Winter R; Gratton E
    Biophys J; 1997 Mar; 72(3):1264-77. PubMed ID: 9138572
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Molecular volumes of DOPC and DOPS in mixed bilayers of multilamellar vesicles.
    Murugova TN; Balgavý P
    Phys Chem Chem Phys; 2014 Sep; 16(34):18211-6. PubMed ID: 25055002
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Detection of phase separation in fluid phosphatidylserine/phosphatidylcholine mixtures.
    Hinderliter AK; Huang J; Feigenson GW
    Biophys J; 1994 Nov; 67(5):1906-11. PubMed ID: 7858127
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Olanzapine interaction with dipalmitoyl phosphatidylcholine (DPPC) and 1-palmitoyl-2-oleoyl phosphatidylserine (POPS) bilayer: a (13)C and (31)P solid-state NMR study.
    Song C; Nerdal W
    Biophys Chem; 2008 Apr; 134(1-2):47-55. PubMed ID: 18241977
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A DSC and FTIR spectroscopic study of the effects of the epimeric 4-cholesten-3-ols and 4-cholesten-3-one on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine bilayer membranes: comparison with their 5-cholesten analogues.
    Benesch MG; Mannock DA; Lewis RN; McElhaney RN
    Chem Phys Lipids; 2014 Jan; 177():71-90. PubMed ID: 24296232
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.