BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 1888729)

  • 1. Catalytic mechanism of NADP(+)-dependent isocitrate dehydrogenase: implications from the structures of magnesium-isocitrate and NADP+ complexes.
    Hurley JH; Dean AM; Koshland DE; Stroud RM
    Biochemistry; 1991 Sep; 30(35):8671-8. PubMed ID: 1888729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure of isocitrate dehydrogenase with isocitrate, nicotinamide adenine dinucleotide phosphate, and calcium at 2.5-A resolution: a pseudo-Michaelis ternary complex.
    Stoddard BL; Dean A; Koshland DE
    Biochemistry; 1993 Sep; 32(36):9310-6. PubMed ID: 8369300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural basis for a change in substrate specificity: crystal structure of S113E isocitrate dehydrogenase in a complex with isopropylmalate, Mg2+, and NADP.
    Doyle SA; Beernink PT; Koshland DE
    Biochemistry; 2001 Apr; 40(14):4234-41. PubMed ID: 11284679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Substrate-free structure of a monomeric NADP isocitrate dehydrogenase: an open conformation phylogenetic relationship of isocitrate dehydrogenase.
    Imabayashi F; Aich S; Prasad L; Delbaere LT
    Proteins; 2006 Apr; 63(1):100-12. PubMed ID: 16416443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Location of the coenzyme binding site in the porcine mitochondrial NADP-dependent isocitrate dehydrogenase.
    Huang YC; Colman RF
    J Biol Chem; 2005 Aug; 280(34):30349-53. PubMed ID: 15975917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isocitrate dehydrogenase from the hyperthermophile Aeropyrum pernix: X-ray structure analysis of a ternary enzyme-substrate complex and thermal stability.
    Karlström M; Stokke R; Steen IH; Birkeland NK; Ladenstein R
    J Mol Biol; 2005 Jan; 345(3):559-77. PubMed ID: 15581899
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structures of human cytosolic NADP-dependent isocitrate dehydrogenase reveal a novel self-regulatory mechanism of activity.
    Xu X; Zhao J; Xu Z; Peng B; Huang Q; Arnold E; Ding J
    J Biol Chem; 2004 Aug; 279(32):33946-57. PubMed ID: 15173171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of a highly NADP+-specific isocitrate dehydrogenase.
    Sidhu NS; Delbaere LT; Sheldrick GM
    Acta Crystallogr D Biol Crystallogr; 2011 Oct; 67(Pt 10):856-69. PubMed ID: 21931217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation by site-directed mutagenesis of aspartic acid residues in the metal site of pig heart NADP-dependent isocitrate dehydrogenase.
    Grodsky NB; Soundar S; Colman RF
    Biochemistry; 2000 Mar; 39(9):2193-200. PubMed ID: 10694384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystallographic study of coenzyme, coenzyme analogue and substrate binding in 6-phosphogluconate dehydrogenase: implications for NADP specificity and the enzyme mechanism.
    Adams MJ; Ellis GH; Gover S; Naylor CE; Phillips C
    Structure; 1994 Jul; 2(7):651-68. PubMed ID: 7922042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cadmium-113 and magnesium-25 NMR study of the divalent metal binding sites of isocitrate dehydrogenases from pig heart.
    Ehrlich RS; Colman RF
    Biochim Biophys Acta; 1995 Jan; 1246(2):135-41. PubMed ID: 7819280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of isocitrate dehydrogenase with alpha-ketoglutarate at 2.7-A resolution: conformational changes induced by decarboxylation of isocitrate.
    Stoddard BL; Koshland DE
    Biochemistry; 1993 Sep; 32(36):9317-22. PubMed ID: 8369301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sites of binding and orientation in a four-location model for protein stereospecificity.
    Mesecar AD; Koshland DE
    IUBMB Life; 2000 May; 49(5):457-66. PubMed ID: 10902579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutational analysis of the catalytic residues lysine 230 and tyrosine 160 in the NADP(+)-dependent isocitrate dehydrogenase from Escherichia coli.
    Lee ME; Dyer DH; Klein OD; Bolduc JM; Stoddard BL; Koshland DE
    Biochemistry; 1995 Jan; 34(1):378-84. PubMed ID: 7819221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural studies of Saccharomyces cerevesiae mitochondrial NADP-dependent isocitrate dehydrogenase in different enzymatic states reveal substantial conformational changes during the catalytic reaction.
    Peng Y; Zhong C; Huang W; Ding J
    Protein Sci; 2008 Sep; 17(9):1542-54. PubMed ID: 18552125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determinants of performance in the isocitrate dehydrogenase of Escherichia coli.
    Dean AM; Shiau AK; Koshland DE
    Protein Sci; 1996 Feb; 5(2):341-7. PubMed ID: 8745412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation by mutagenesis of the roles of His309, His315, and His319 in the coenzyme site of pig heart NADP-dependent isocitrate dehydrogenase.
    Huang YC; Colman RF
    Biochemistry; 2002 Apr; 41(17):5637-43. PubMed ID: 11969425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coenzyme binding by triphosphopyridine nucleotide dependent isocitrate dehydrogenase from beef liver. Equilibrium and kinetics studies.
    Carlier MF; Pantaloni D
    Biochemistry; 1976 Oct; 15(21):4703-12. PubMed ID: 9985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implication by site-directed mutagenesis of Arg314 and Tyr316 in the coenzyme site of pig mitochondrial NADP-dependent isocitrate dehydrogenase.
    Lee P; Colman RF
    Arch Biochem Biophys; 2002 May; 401(1):81-90. PubMed ID: 12054490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of the monomeric isocitrate dehydrogenase in the presence of NADP+: insight into the cofactor recognition, catalysis, and evolution.
    Yasutake Y; Watanabe S; Yao M; Takada Y; Fukunaga N; Tanaka I
    J Biol Chem; 2003 Sep; 278(38):36897-904. PubMed ID: 12855708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.