These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 1888892)
1. High-level expression of a tobacco chitinase gene in Nicotiana sylvestris. Susceptibility of transgenic plants to Cercospora nicotianae infection. Neuhaus JM; Ahl-Goy P; Hinz U; Flores S; Meins F Plant Mol Biol; 1991 Jan; 16(1):141-51. PubMed ID: 1888892 [TBL] [Abstract][Full Text] [Related]
2. The function of vacuolar beta-1,3-glucanase investigated by antisense transformation. Susceptibility of transgenic Nicotiana sylvestris plants to Cercospora nicotianae infection. Neuhaus JM; Flores S; Keefe D; Ahl-Goy P; Meins F Plant Mol Biol; 1992 Aug; 19(5):803-13. PubMed ID: 1643283 [TBL] [Abstract][Full Text] [Related]
3. Regulated inactivation of homologous gene expression in transgenic Nicotiana sylvestris plants containing a defense-related tobacco chitinase gene. Hart CM; Fischer B; Neuhaus JM; Meins F Mol Gen Genet; 1992 Nov; 235(2-3):179-88. PubMed ID: 1281514 [TBL] [Abstract][Full Text] [Related]
4. The structure and regulation of homeologous tobacco endochitinase genes of Nicotiana sylvestris and N. tomentosiformis origin. van Buuren M; Neuhaus JM; Shinshi H; Ryals J; Meins F Mol Gen Genet; 1992 Apr; 232(3):460-9. PubMed ID: 1588915 [TBL] [Abstract][Full Text] [Related]
5. An acidic class III chitinase in sugar beet: induction by Cercospora beticola, characterization, and expression in transgenic tobacco plants. Nielsen KK; Mikkelsen JD; Kragh KM; Bojsen K Mol Plant Microbe Interact; 1993; 6(4):495-506. PubMed ID: 8400378 [TBL] [Abstract][Full Text] [Related]
6. Posttranslational processing of a new class of hydroxyproline-containing proteins. Prolyl hydroxylation and C-terminal cleavage of tobacco (Nicotiana tabacum) vacuolar chitinase. Sticher L; Hofsteenge J; Neuhaus JM; Boller T; Meins F Plant Physiol; 1993 Apr; 101(4):1239-47. PubMed ID: 8310061 [TBL] [Abstract][Full Text] [Related]
7. Suppression of tobacco basic chitinase gene expression in response to colonization by the arbuscular mycorrhizal fungus Glomus intraradices. David R; Itzhaki H; Ginzberg I; Gafni Y; Galili G; Kapulnik Y Mol Plant Microbe Interact; 1998 Jun; 11(6):489-97. PubMed ID: 9612947 [TBL] [Abstract][Full Text] [Related]
8. Correct targeting of a vacuolar tobacco chitinase in Saccharomyces cerevisiae--post-translational modifications are dependent on the host strain. Kunze I; Nilsson C; Adler K; Manteuffel R; Horstmann C; Bröker M; Kunze G Biochim Biophys Acta; 1998 Feb; 1395(3):329-44. PubMed ID: 9512669 [TBL] [Abstract][Full Text] [Related]
9. Effect of chitinase antisense RNA expression on disease susceptibility of Arabidopsis plants. Samac DA; Shah DM Plant Mol Biol; 1994 Jul; 25(4):587-96. PubMed ID: 8061313 [TBL] [Abstract][Full Text] [Related]
10. Acidic and basic class III chitinase mRNA accumulation in response to TMV infection of tobacco. Lawton K; Ward E; Payne G; Moyer M; Ryals J Plant Mol Biol; 1992 Aug; 19(5):735-43. PubMed ID: 1643280 [TBL] [Abstract][Full Text] [Related]
11. Pathogenesis-related functions of plant beta-1,3-glucanases investigated by antisense transformation--a review. Beffa R; Meins F Gene; 1996 Nov; 179(1):97-103. PubMed ID: 8955634 [TBL] [Abstract][Full Text] [Related]
12. Structure of a tobacco endochitinase gene: evidence that different chitinase genes can arise by transposition of sequences encoding a cysteine-rich domain. Shinshi H; Neuhas JM; Ryals J; Meins F Plant Mol Biol; 1990 Mar; 14(3):357-68. PubMed ID: 1966383 [TBL] [Abstract][Full Text] [Related]
13. A short C-terminal sequence is necessary and sufficient for the targeting of chitinases to the plant vacuole. Neuhaus JM; Sticher L; Meins F; Boller T Proc Natl Acad Sci U S A; 1991 Nov; 88(22):10362-6. PubMed ID: 1946457 [TBL] [Abstract][Full Text] [Related]
14. Novel osmotically induced antifungal chitinases and bacterial expression of an active recombinant isoform. Yun DJ; D'Urzo MP; Abad L; Takeda S; Salzman R; Chen Z; Lee H; Hasegawa PM; Bressan RA Plant Physiol; 1996 Aug; 111(4):1219-25. PubMed ID: 8756502 [TBL] [Abstract][Full Text] [Related]
15. Characterization of two class II chitinase genes from peanut and expression studies in transgenic tobacco plants. Kellmann JW; Kleinow T; Engelhardt K; Philipp C; Wegener D; Schell J; Schreier PH Plant Mol Biol; 1996 Jan; 30(2):351-8. PubMed ID: 8616259 [TBL] [Abstract][Full Text] [Related]
16. A tobacco gene encoding a novel basic class II chitinase: a putative ancestor of basic class I and acidic class II chitinase genes. Ohme-Takagi M; Meins F; Shinshi H Mol Gen Genet; 1998 Sep; 259(5):511-5. PubMed ID: 9790582 [TBL] [Abstract][Full Text] [Related]
17. Transplastomic Nicotiana benthamiana plants expressing multiple defence genes encoding protease inhibitors and chitinase display broad-spectrum resistance against insects, pathogens and abiotic stresses. Chen PJ; Senthilkumar R; Jane WN; He Y; Tian Z; Yeh KW Plant Biotechnol J; 2014 May; 12(4):503-15. PubMed ID: 24479648 [TBL] [Abstract][Full Text] [Related]
18. Analysis of acidic and basic chitinases from tobacco and petunia and their constitutive expression in transgenic tobacco. Linthorst HJ; van Loon LC; van Rossum CM; Mayer A; Bol JF; van Roekel JS; Meulenhoff EJ; Cornelissen BJ Mol Plant Microbe Interact; 1990; 3(4):252-8. PubMed ID: 2131096 [TBL] [Abstract][Full Text] [Related]
19. [Studies of transgenic tobacco plants expressing beta-1,3-glucanase and chitinase genes and their potential for fungal resistance]. Lan HY; Tian YC; Wang CH; Liu GZ; Zhang LH; Wang LL; Chen ZH Yi Chuan Xue Bao; 2000; 27(1):70-7. PubMed ID: 10883543 [TBL] [Abstract][Full Text] [Related]
20. Silencing of transgenes introduced into leaves by agroinfiltration: a simple, rapid method for investigating sequence requirements for gene silencing. Schöb H; Kunz C; Meins F Mol Gen Genet; 1997 Nov; 256(5):581-5. PubMed ID: 9413443 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]