These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 18889)

  • 21. S49 lymphoma wild type and variant clones contain normal calcium dependent regulator.
    Burgess WH; Howlett AC; Kretsinger RH; Gilman AG
    J Cyclic Nucleotide Res; 1978 Jun; 4(3):175-81. PubMed ID: 214461
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Selective effects of an essential sulfhydryl group on the activation of dopamine- and guanine nucleotide-sensitive adenylate cyclase.
    Suen ET; Kwan PC; Clement-Cormier YC
    Mol Pharmacol; 1982 Nov; 22(3):595-601. PubMed ID: 7155125
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adenylate cyclase activity in corpus striatum of rats with porto-caval anastomosis.
    Laursen H; Klysner R; Geisler A
    Acta Physiol Scand; 1977 Jul; 100(3):282-7. PubMed ID: 920198
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cyclic AMP, adenylate cyclase and cyclic AMP-phosphodiesterase activities in diabetic rat adipocytes.
    Chiappe de Cingolani GE
    Acta Physiol Pharmacol Latinoam; 1986; 36(1):39-46. PubMed ID: 3020875
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of calmodulin on dopamine-sensitive adenylate cyclase activity in rat striatal membranes.
    Gnegy M; Treisman G
    Mol Pharmacol; 1981 Mar; 19(2):256-63. PubMed ID: 7231389
    [No Abstract]   [Full Text] [Related]  

  • 26. Insulin stimulation of cyclic AMP phosphodiesterase is independent from the G-protein pathways involved in adenylate cyclase regulation.
    Weber HW; Chung FZ; Day K; Appleman MM
    J Cyclic Nucleotide Protein Phosphor Res; 1986; 11(5):345-54. PubMed ID: 3040818
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Coupling of neurotransmitter receptors with an adenylate cyclase. A tool for studying their pharmacological properties, distribution and modulation in the central nervous system.
    Bockaert J
    J Physiol (Paris); 1978; 74(5):527-33. PubMed ID: 218000
    [No Abstract]   [Full Text] [Related]  

  • 28. Identification and localization of the recognition binding subunit of the D1 dopamine receptor.
    Tanaka C; Kuno T; Mita T; Ishibe T
    Adv Biochem Psychopharmacol; 1983; 36():135-45. PubMed ID: 6858751
    [No Abstract]   [Full Text] [Related]  

  • 29. Differential effects of cytosolic modulators of fluoride-stimulated adenylate cyclase activity in striatum and cerebral cortex.
    Rabin RA; Bode DC; Molinoff PB
    Alcohol Drug Res; 1985-1986; 6(6):379-86. PubMed ID: 3836685
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dopamine-sensitive adenylate cyclase and cAMP phosphodiesterase in substantia nigra and corpus striatum of rat brain.
    Traficante LJ; Friedman E; Oleshansky MA; Gershon S
    Life Sci; 1976 Oct; 19(7):1061-6. PubMed ID: 186677
    [No Abstract]   [Full Text] [Related]  

  • 31. Dopamine autoreceptor regulation of the kinetic state of striatal tyrosine hydroxylase.
    Strait KA; Kuczenski R
    Mol Pharmacol; 1986 Jun; 29(6):561-9. PubMed ID: 2872588
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Attenuation of catecholamine-coupled adenylate cyclase following surgical isolation of rat caudate.
    Pajer KA; Palmer GC; Chronister RB; Marco LA
    J Neurobiol; 1982 May; 13(3):279-88. PubMed ID: 6122717
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adenylate cyclase, cyclic adenosin 3':5'-monophosphate phosphodiesterase, and regression of Walker 256 mammary carcinoma.
    Cho-Chung YS; Newcomer SF
    Cancer Res; 1977 Dec; 37(12):4493-9. PubMed ID: 200352
    [No Abstract]   [Full Text] [Related]  

  • 34. Effect of cholera toxin on the activation of adenylate cyclase by calmodulin in bovine striatum.
    Mickevicius CK; Harrison JK; Gnegy ME
    Mol Pharmacol; 1986 Nov; 30(5):469-75. PubMed ID: 3773884
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Repartition and drug sensitivity of dopamine and L-isoproterenol-sensitive adenylate cyclases in rat brain homogenates.
    Prémont J; Tassin JP; Thierry AM; Bockaert J
    Adv Biochem Psychopharmacol; 1976; 15():347-56. PubMed ID: 192054
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Negative regulation of cyclic AMP levels by activation of cyclic nucleotide phosphodiesterases: the example of the dog thyroid.
    Dumont JE; Miot F; Erneux C; Couchie D; Cochaux P; Gervy-Decoster C; Van Sande J; Wells JN
    Adv Cyclic Nucleotide Protein Phosphorylation Res; 1984; 16():325-36. PubMed ID: 6202125
    [No Abstract]   [Full Text] [Related]  

  • 37. Regulation of dopamine receptor sensitivity by an endogenous protein activator or adenylate cyclase.
    Costa E; Gnegy MG; Uzunov P
    Naunyn Schmiedebergs Arch Pharmacol; 1977; 297 Suppl 1():S47-8. PubMed ID: 193053
    [No Abstract]   [Full Text] [Related]  

  • 38. Adenosine-sensitive adenylate cyclase in rat striatal homogenates and its relationship to dopamine- and Ca2+-sensitive adenylate cyclases.
    Prémont J; Perez M; Bockaert J
    Mol Pharmacol; 1977 Jul; 13(4):662-70. PubMed ID: 887074
    [No Abstract]   [Full Text] [Related]  

  • 39. Synaptic membrane phosphorylation: target for neurotransmitters and peptides.
    Oestreicher AB; Zwiers H; Gispen WH
    Prog Brain Res; 1982; 55():349-67. PubMed ID: 6131478
    [No Abstract]   [Full Text] [Related]  

  • 40. Similarity in Ca2+-induced changes between troponic-C and protein activator of 3':5'-cyclic nucleotide phosphodiesterase and their tryptic fragments.
    Drabikowski W; Kuznicki J; Grabarek Z
    Biochim Biophys Acta; 1977 Nov; 485(1):124-33. PubMed ID: 199264
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.