BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 18891149)

  • 1. The kinetics and thermodynamics of reversible denaturation of crystalline soybean trypsin inhibitor.
    KUNITZ M
    J Gen Physiol; 1948 Nov; 32(2):241-63. PubMed ID: 18891149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The reversible heat denaturation of chymotrypsinogen.
    EISENBERG MA; SCHWERT GW
    J Gen Physiol; 1951 May; 34(5):583-606. PubMed ID: 14832440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. THE NATURE AND CONTROL OF REACTIONS IN BIOLUMINESCENCE : WITH SPECIAL REFERENCE TO THE MECHANISM OF REVERSIBLE AND IRREVERSIBLE INHIBITIONS BY HYDROGEN AND HYDROXYL IONS, TEMPERATURE, PRESSURE, ALCOHOL, URETHANE, AND SULFANILAMIDE IN BACTERIA.
    Johnson FH; Eyring H; Steblay R; Chaplin H; Huber C; Gherardi G
    J Gen Physiol; 1945 May; 28(5):463-537. PubMed ID: 19873433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heat stabilization produced by protein-protein association. A differential scanning calorimetric study of the heat denaturation of the trypsin-soybean trypsin inhibitor and trypsin-ovomucoid complexes.
    Donovan JW; Beardslee RA
    J Biol Chem; 1975 Mar; 250(6):1966-71. PubMed ID: 1167859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic analysis about the effects of neutral salts on the thermal stability of yeast alcohol dehydrogenase.
    Ikegaya K
    J Biochem; 2005 Mar; 137(3):349-54. PubMed ID: 15809336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRYSTALLINE TRYPSIN : IV. REVERSIBILITY OF THE INACTIVATION AND DENATURATION OF TRYPSIN BY HEAT.
    Northrop JH
    J Gen Physiol; 1932 Nov; 16(2):323-37. PubMed ID: 19872708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrophobic hydration processes thermal and chemical denaturation of proteins.
    Fisicaro E; Compari C; Braibanti A
    Biophys Chem; 2011 Jun; 156(1):51-67. PubMed ID: 21482019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inactivation and reactivation of B. megatherium phage.
    NORTHROP JH
    J Gen Physiol; 1955 Nov; 39(2):225-58. PubMed ID: 13271723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal inactivation studies of normal and variant human erythrocyte carbonic anhydrases by using a sulphonamide-binding assay.
    Osborne WR; Tashian RE
    Biochem J; 1974 Jul; 141(1):219-25. PubMed ID: 4218094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermodynamic stability effects of single peptide bond hydrolysis in protein inhibitors of serine proteinases.
    Krokoszyńska I; Otlewski J
    J Mol Biol; 1996 Mar; 256(4):793-802. PubMed ID: 8642598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Interpretation of thermograms of protein denaturation in non-equilibrium conditions].
    Burova TV; Varfolomeeva EP; Grinberg VIa; Suchkov VV; Papkov VS; Bauve Kh; Tolstoguzov VB
    Biofizika; 1990; 35(2):222-7. PubMed ID: 2369595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermodynamics of CFTR channel gating: a spreading conformational change initiates an irreversible gating cycle.
    Csanády L; Nairn AC; Gadsby DC
    J Gen Physiol; 2006 Nov; 128(5):523-33. PubMed ID: 17043148
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The alteration of intracellular enzymes. III. The effect of temperature on the kinetics of altered and unaltered yeast catalase.
    FRASER MJ; KAPLAN JG
    J Gen Physiol; 1955 Mar; 38(4):515-47. PubMed ID: 14354151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring the denaturation of whey proteins upon application of moderate electric fields: a kinetic and thermodynamic study.
    Pereira RN; Teixeira JA; Vicente AA
    J Agric Food Chem; 2011 Nov; 59(21):11589-97. PubMed ID: 21932854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interpretation of DSC data on protein denaturation complicated by kinetic and irreversible effects.
    Grinberg VY; Burova TV; Haertlé T; Tolstoguzov VB
    J Biotechnol; 2000 May; 79(3):269-80. PubMed ID: 10867187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substituent-dependent backward reaction in mechanofluorochromism of dibenzoylmethanatoboron difluoride derivatives.
    Sagawa T; Ito F; Sakai A; Ogata Y; Tanaka K; Ikeda H
    Photochem Photobiol Sci; 2016 Mar; 15(3):420-30. PubMed ID: 26907200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A theoretical analysis on characteristics of protein structures induced by cold denaturation.
    Oshima H; Yoshidome T; Amano K; Kinoshita M
    J Chem Phys; 2009 Nov; 131(20):205102. PubMed ID: 19947708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Thermodynamic and kinetic study of thermal denaturation of Kunitz soybean trypsin inhibitor by differential scanning microcalorimetry].
    Varfolomeeva EP; Burova TV; Grinberg VIa; Tolstoguzov VB
    Mol Biol (Mosk); 1989; 23(5):1263-72. PubMed ID: 2608035
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trypsin inhibition activity of heat-denatured ovomucoid: a kinetic study.
    Van der Plancken I; Van Remoortere M; Van Loey A; Hendrickx ME
    Biotechnol Prog; 2004; 20(1):82-6. PubMed ID: 14763827
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [The kinetics of the inactivation of the soybean trypsin inhibitor by heat processing].
    Flaumenbaum BL; Levitskiĭ AP; Belen'kaia IR
    Ukr Biokhim Zh (1978); 1992; 64(6):94-8. PubMed ID: 1488821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.