These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 1889539)

  • 21. The metabolism of D- and L-3-hydroxybutyrate in developing rat brain.
    Swiatek KR; Dombrowski GJ; Chao KL
    Biochem Med; 1984 Jun; 31(3):332-46. PubMed ID: 6477538
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Utilization of ketone bodies by chick brain and spinal cord during embryonic and postnatal development.
    Linares A; CaamaƱo GJ; Diaz R; Gonzalez FJ; Garcia-Peregrin E
    Neurochem Res; 1993 Oct; 18(10):1107-12. PubMed ID: 8255360
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of fasting on D-3-hydroxybutyrate metabolism in the perfused rat heart.
    Sultan AM
    Mol Cell Biochem; 1990 Mar; 93(2):107-18. PubMed ID: 2345539
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Oxidative metabolism in fetal rat kidney during late gestation.
    Freund N; Sedraoui M; Geloso JP
    J Dev Physiol; 1982 Aug; 4(4):215-26. PubMed ID: 7175119
    [TBL] [Abstract][Full Text] [Related]  

  • 25. beta-Hydroxybutyrate is an alternative substrate for the fetal sheep brain.
    Harding JE; Evans PC
    J Dev Physiol; 1991 Nov; 16(5):293-9. PubMed ID: 1823915
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of lactate as an energy substrate for the brain during the early neonatal period.
    Medina JM
    Biol Neonate; 1985; 48(4):237-44. PubMed ID: 3904842
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Inhibition of lactate removal by ketone bodies in rat liver. Evidence for a quantitatively important role of the plasma membrane lactate transporter in lactate metabolism.
    Metcalfe HK; Monson JP; Welch SG; Cohen RD
    J Clin Invest; 1986 Sep; 78(3):743-7. PubMed ID: 3745435
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Age-dependent utilization of D-beta-OH-butyrate and oleic acid as glucose substitutes by neonatal mouse brain cell cultures.
    Bossi E; Zuppinger K; Siegrist HP; Wiesmann U; Herschkowitz N
    Pediatr Res; 1982 Jul; 16(7):579-82. PubMed ID: 6810297
    [No Abstract]   [Full Text] [Related]  

  • 29. Regulation of energy metabolism in synaptic terminals and cultured rat brain astrocytes: differences revealed using aminooxyacetate.
    McKenna MC; Tildon JT; Stevenson JH; Boatright R; Huang S
    Dev Neurosci; 1993; 15(3-5):320-9. PubMed ID: 7805585
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effects of mild congenital methylmercury intoxication on the metabolism of 3-hydroxybutyrate and glucose in the brains of suckling rats.
    Menon NK; Lopez RR
    Neurotoxicology; 1985; 6(1):55-61. PubMed ID: 3873037
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Preferential utilization of ketone bodies in the brain and lung of newborn rats.
    Yeh YY; Sheehan PM
    Fed Proc; 1985 Apr; 44(7):2352-8. PubMed ID: 3884391
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Competition of glycerol with other oxidizable substrates in rat brain.
    McKenna MC; Bezold LI; Kimatian SJ; Tildon JT
    Biochem J; 1986 Jul; 237(1):47-51. PubMed ID: 3099749
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metabolic effects of acetate in perfused rat liver. Studies on ketogenesis, glucose output, lactate uptake and lipogenesis.
    Snoswell AM; Trimble RP; Fishlock RC; Storer GB; Topping DL
    Biochim Biophys Acta; 1982 Jun; 716(3):290-7. PubMed ID: 7115753
    [No Abstract]   [Full Text] [Related]  

  • 34. Fetal fuels II: contributions of selected carbon fuels to oxidative metabolism in rat conceptus.
    Shambaugh GE; Koehler RA; Freinkel N
    Am J Physiol; 1977 Dec; 233(6):E457-61. PubMed ID: 596438
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Utilization of L(+)-3-hydroxybutyrate, D(-)-3-hydroxybutyrate, acetoacetate, and glucose for respiration and lipid synthesis in the 18-day-old rat.
    Webber RJ; Edmond J
    J Biol Chem; 1977 Aug; 252(15):5222-6. PubMed ID: 885847
    [No Abstract]   [Full Text] [Related]  

  • 36. Glucose, lactate, and ketone body utilization by human mammary carcinomas in vivo.
    Kallinowskil F; Davel S; Vaupell P; Baessler KH; Wagner K
    Adv Exp Med Biol; 1985; 191():763-73. PubMed ID: 3832881
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The utilization of DL-[3-(14)C]hydroxybutyrate by malnourished rat pups.
    Swiatek KR; Chao KL; Chao HL; Dombrowski GJ
    Neuroscience; 1979; 4(11):1751-60. PubMed ID: 117398
    [No Abstract]   [Full Text] [Related]  

  • 38. Utilization of ketone bodies and glucose by established neural cell lines.
    Roeder LM; Poduslo SE; Tildon JT
    J Neurosci Res; 1982; 8(4):671-82. PubMed ID: 7161845
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Brain beta-hydroxybutyrate utilization in neonatal hypothyroidism in rats.
    Crane SC; Morgan BL
    Biol Neonate; 1983; 43(5-6):234-44. PubMed ID: 6409170
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of diabetes on oxidation of exogenous substrates in rat aorta.
    Dahlkvist HH; Arnqvist HJ; Norrby K
    Diabete Metab; 1981 Dec; 7(4):275-81. PubMed ID: 7037491
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.