These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 1889583)

  • 1. Proton buffering in human skeletal muscle studied in vivo by phosphorus magnetic resonance spectroscopy.
    Kemp GJ; Taylor DJ; Dunn JF; Radda GK
    Biochem Soc Trans; 1991 Apr; 19(2):207S. PubMed ID: 1889583
    [No Abstract]   [Full Text] [Related]  

  • 2. The rate of phosphate transport during recovery from muscular exercise depends on cytosolic [H+]. A 31P-MR spectroscopy study in humans.
    Iotti S; Funicello R; Zaniol P; Barbiroli B
    Biochem Biophys Res Commun; 1991 Aug; 178(3):871-7. PubMed ID: 1872868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping of metabolites in whole animals by 31P NMR using surface coils.
    Ackerman JJ; Grove TH; Wong GG; Gadian DG; Radda GK
    Nature; 1980 Jan; 283(5743):167-70. PubMed ID: 7350541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of post-exercise phosphate transport in human skeletal muscle: an in vivo 31P-MR spectroscopy study.
    Iotti S; Funicello R; Zaniol P; Barbiroli B
    Biochem Biophys Res Commun; 1991 May; 176(3):1204-9. PubMed ID: 2039505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Some recent applications of 1H NMR spectroscopy in vivo.
    Gadian DG; Proctor E; Williams SR
    Ann N Y Acad Sci; 1987; 508():241-50. PubMed ID: 3439704
    [No Abstract]   [Full Text] [Related]  

  • 6. Intracellular sodium flux and high-energy phosphorus metabolites in ischemic skeletal muscle.
    Blum H; Schnall MD; Chance B; Buzby GP
    Am J Physiol; 1988 Sep; 255(3 Pt 1):C377-84. PubMed ID: 3421318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential and limitations of nuclear magnetic resonance for the cardiologist.
    Radda GK
    Br Heart J; 1983 Sep; 50(3):197-201. PubMed ID: 6615657
    [No Abstract]   [Full Text] [Related]  

  • 8. Metabolic studies of whole animals and humans using phosphorus nuclear magnetic resonance.
    Gadian DG
    Biosci Rep; 1981 Jun; 1(6):449-60. PubMed ID: 6945878
    [No Abstract]   [Full Text] [Related]  

  • 9. Pi trapping in glycogenolytic pathway can explain transient Pi disappearance during recovery from muscular exercise. A 31P NMR study in the human.
    Bendahan D; Confort-Gouny S; Kozak-Reiss G; Cozzone PJ
    FEBS Lett; 1990 Sep; 269(2):402-5. PubMed ID: 2401366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Constant relationships between force, phosphate concentration, and pH in muscles with differential fatigability.
    Weiner MW; Moussavi RS; Baker AJ; Boska MD; Miller RG
    Neurology; 1990 Dec; 40(12):1888-93. PubMed ID: 2247239
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo 31P nuclear magnetic resonance spectroscopy of skeletal muscle energetics in endotoxemic rats: a prospective, randomized study.
    Gilles RJ; D'Orio V; Ciancabilla F; Carlier PG
    Crit Care Med; 1994 Mar; 22(3):499-505. PubMed ID: 8125002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Muscular energetics studied by nuclear magnetic resonance spectroscopy of phosphorus (cardiac and skeletal muscles)].
    Rossi A
    Arch Int Physiol Biochim; 1988 Sep; 96(4):A393-409. PubMed ID: 2463818
    [No Abstract]   [Full Text] [Related]  

  • 13. Inorganic phosphate is transported into mitochondria in the absence of ATP biosynthesis: an in vivo 31P NMR study in the human skeletal muscle.
    Iotti S; Lodi R; Gottardi G; Zaniol P; Barbiroli B
    Biochem Biophys Res Commun; 1996 Aug; 225(1):191-4. PubMed ID: 8769116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy metabolism of the untrained muscle of elite runners as observed by 31P magnetic resonance spectroscopy: evidence suggesting a genetic endowment for endurance exercise.
    Park JH; Brown RL; Park CR; Cohn M; Chance B
    Proc Natl Acad Sci U S A; 1988 Dec; 85(23):8780-4. PubMed ID: 3194388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Muscle phosphorus energy state in very-low-birth-weight infants: effect of exercise.
    Bertocci LA; Mize CE; Uauy R
    Am J Physiol; 1992 Mar; 262(3 Pt 1):E289-94. PubMed ID: 1550222
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Are eccentric contractions required to induce the skeletal muscle fiber disruption that occurs following unaccustomed activity?
    Jubrias S; Klug GA
    Muscle Nerve; 1993 Dec; 16(12):1422-3. PubMed ID: 8232407
    [No Abstract]   [Full Text] [Related]  

  • 17. Correlation of function and energy metabolism in rat ischemic skeletal muscle by 31P-NMR spectroscopy: effects of torbafylline.
    Koch H; Okyayuz-Baklouti I; Norris D; Kogler H; Leibfritz D
    J Med; 1993; 24(1):47-66. PubMed ID: 8501403
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Skeletal muscle bioenergetics during frequency-dependent fatigue.
    Bridges CR; Clark BJ; Hammond RL; Stephenson LW
    Am J Physiol; 1991 Mar; 260(3 Pt 1):C643-51. PubMed ID: 2003585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitivity of in vivo MRS of the N-delta proton in proximal histidine of deoxymyoglobin.
    Wang Z; Wang DJ; Noyszewski EA; Bogdan AR; Haselgrove JC; Reddy R; Zimmerman RA; Leigh JS
    Magn Reson Med; 1992 Oct; 27(2):362-7. PubMed ID: 1334205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alterations of skeletal muscle metabolism in humans studied by phosphorus 31 magnetic resonance spectroscopy in congestive heart failure.
    Rajagopalan B; Conway MA; Massie B; Radda GK
    Am J Cardiol; 1988 Sep; 62(8):53E-57E. PubMed ID: 3414538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.