BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 1889615)

  • 1. Control of energetic processes in contracting human skeletal muscle.
    Sahlin K
    Biochem Soc Trans; 1991 Apr; 19(2):353-8. PubMed ID: 1889615
    [No Abstract]   [Full Text] [Related]  

  • 2. Biochemical adaptations to endurance exercise in muscle.
    Holloszy JO; Booth FW
    Annu Rev Physiol; 1976; 38():273-91. PubMed ID: 130825
    [No Abstract]   [Full Text] [Related]  

  • 3. Energy considerations during exercise.
    Hodgson DR
    Vet Clin North Am Equine Pract; 1985 Dec; 1(3):447-60. PubMed ID: 3877550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Creatine and the control of energy metabolism in cardiac and skeletal muscle cells in culture.
    Seraydarian MW; Artaza L; Abbott BC
    J Mol Cell Cardiol; 1974 Oct; 6(5):405-13. PubMed ID: 4431045
    [No Abstract]   [Full Text] [Related]  

  • 5. Energy changes and muscular contraction.
    Curtin NA; Woledge RC
    Physiol Rev; 1978 Jul; 58(3):690-761. PubMed ID: 28541
    [No Abstract]   [Full Text] [Related]  

  • 6. Protecting the cellular energy state during contractions: role of AMP deaminase.
    Hancock CR; Brault JJ; Terjung RL
    J Physiol Pharmacol; 2006 Nov; 57 Suppl 10():17-29. PubMed ID: 17242488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidative phosphorylation: unique regulatory mechanism and role in metabolic homeostasis.
    Wilson DF
    J Appl Physiol (1985); 2017 Mar; 122(3):611-619. PubMed ID: 27789771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The creatine kinase system in smooth muscle.
    Clark JF
    Mol Cell Biochem; 1994; 133-134():221-32. PubMed ID: 7808455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of oxidative and glycogenolytic ATP turnover in exercising rat skeletal muscle.
    Sanderson AL; Kemp GJ; Thompson CH; Radda GK
    Biochem Soc Trans; 1995 May; 23(2):292S. PubMed ID: 7672319
    [No Abstract]   [Full Text] [Related]  

  • 10. AMP deamination delays muscle acidification during heavy exercise and hypoxia.
    Korzeniewski B
    J Biol Chem; 2006 Feb; 281(6):3057-66. PubMed ID: 16314416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Creatine kinase system and muscle energy metabolism].
    Chetverikova EP
    Zh Obshch Biol; 1981; 42(4):586-96. PubMed ID: 7025505
    [No Abstract]   [Full Text] [Related]  

  • 12. [Energy metabolism of right ventricular myocardium following section of the left coronary artery].
    Razumnaia NM
    Kardiologiia; 1973 Mar; 13(3):62-6. PubMed ID: 4717187
    [No Abstract]   [Full Text] [Related]  

  • 13. [Energetics of muscular exercise].
    Di Prampero PE
    J Physiol (Paris); 1972; 65():Suppl 1:51A+. PubMed ID: 4569815
    [No Abstract]   [Full Text] [Related]  

  • 14. Energy metabolism of working muscle: concentration profiles of selected metabolites.
    Edington DW; Ward GR; Saville WA
    Am J Physiol; 1973 Jun; 224(6):1375-80. PubMed ID: 4351297
    [No Abstract]   [Full Text] [Related]  

  • 15. Metabolic regulation during exercise.
    Poortmans J
    Bull Eur Physiopathol Respir; 1979; 15(2):187-202. PubMed ID: 158398
    [No Abstract]   [Full Text] [Related]  

  • 16. Intracellular pH and energy metabolism in skeletal muscle of man. With special reference to exercise.
    Sahlin K
    Acta Physiol Scand Suppl; 1978; 455():1-56. PubMed ID: 27059
    [No Abstract]   [Full Text] [Related]  

  • 17. Control of adenosine monophosphate catabolism in mouse ascites tumor cells.
    Sauer LA
    Cancer Res; 1978 Apr; 38(4):1057-63. PubMed ID: 639037
    [No Abstract]   [Full Text] [Related]  

  • 18. [Creatine kinase reaction in cardiac mitoplasts of rats. Its relation to oxidative phosphorylation].
    Kuznetsov AV; Saks VA; Kupriianov VV
    Biull Vsesoiuznogo Kardiol Nauchn Tsentra AMN SSSR; 1985; 8(1):7-14. PubMed ID: 4005057
    [No Abstract]   [Full Text] [Related]  

  • 19. Inosine monophosphate accumulation in energy-deficient human skeletal muscle with reference to substrate availability, fibre types and AMP deaminase activity.
    Norman B
    Scand J Clin Lab Invest; 1995 Dec; 55(8):733-41. PubMed ID: 8903844
    [No Abstract]   [Full Text] [Related]  

  • 20. ATP from glycolysis is required for normal sodium homeostasis in resting fast-twitch rodent skeletal muscle.
    Okamoto K; Wang W; Rounds J; Chambers EA; Jacobs DO
    Am J Physiol Endocrinol Metab; 2001 Sep; 281(3):E479-88. PubMed ID: 11500303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.