These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 1889615)
1. Control of energetic processes in contracting human skeletal muscle. Sahlin K Biochem Soc Trans; 1991 Apr; 19(2):353-8. PubMed ID: 1889615 [No Abstract] [Full Text] [Related]
2. Biochemical adaptations to endurance exercise in muscle. Holloszy JO; Booth FW Annu Rev Physiol; 1976; 38():273-91. PubMed ID: 130825 [No Abstract] [Full Text] [Related]
3. Energy considerations during exercise. Hodgson DR Vet Clin North Am Equine Pract; 1985 Dec; 1(3):447-60. PubMed ID: 3877550 [TBL] [Abstract][Full Text] [Related]
4. Creatine and the control of energy metabolism in cardiac and skeletal muscle cells in culture. Seraydarian MW; Artaza L; Abbott BC J Mol Cell Cardiol; 1974 Oct; 6(5):405-13. PubMed ID: 4431045 [No Abstract] [Full Text] [Related]
6. Protecting the cellular energy state during contractions: role of AMP deaminase. Hancock CR; Brault JJ; Terjung RL J Physiol Pharmacol; 2006 Nov; 57 Suppl 10():17-29. PubMed ID: 17242488 [TBL] [Abstract][Full Text] [Related]
7. Oxidative phosphorylation: unique regulatory mechanism and role in metabolic homeostasis. Wilson DF J Appl Physiol (1985); 2017 Mar; 122(3):611-619. PubMed ID: 27789771 [TBL] [Abstract][Full Text] [Related]
8. The creatine kinase system in smooth muscle. Clark JF Mol Cell Biochem; 1994; 133-134():221-32. PubMed ID: 7808455 [TBL] [Abstract][Full Text] [Related]
9. Regulation of oxidative and glycogenolytic ATP turnover in exercising rat skeletal muscle. Sanderson AL; Kemp GJ; Thompson CH; Radda GK Biochem Soc Trans; 1995 May; 23(2):292S. PubMed ID: 7672319 [No Abstract] [Full Text] [Related]
10. AMP deamination delays muscle acidification during heavy exercise and hypoxia. Korzeniewski B J Biol Chem; 2006 Feb; 281(6):3057-66. PubMed ID: 16314416 [TBL] [Abstract][Full Text] [Related]
11. [Creatine kinase system and muscle energy metabolism]. Chetverikova EP Zh Obshch Biol; 1981; 42(4):586-96. PubMed ID: 7025505 [No Abstract] [Full Text] [Related]
12. [Energy metabolism of right ventricular myocardium following section of the left coronary artery]. Razumnaia NM Kardiologiia; 1973 Mar; 13(3):62-6. PubMed ID: 4717187 [No Abstract] [Full Text] [Related]
13. [Energetics of muscular exercise]. Di Prampero PE J Physiol (Paris); 1972; 65():Suppl 1:51A+. PubMed ID: 4569815 [No Abstract] [Full Text] [Related]
14. Energy metabolism of working muscle: concentration profiles of selected metabolites. Edington DW; Ward GR; Saville WA Am J Physiol; 1973 Jun; 224(6):1375-80. PubMed ID: 4351297 [No Abstract] [Full Text] [Related]
16. Intracellular pH and energy metabolism in skeletal muscle of man. With special reference to exercise. Sahlin K Acta Physiol Scand Suppl; 1978; 455():1-56. PubMed ID: 27059 [No Abstract] [Full Text] [Related]
17. Control of adenosine monophosphate catabolism in mouse ascites tumor cells. Sauer LA Cancer Res; 1978 Apr; 38(4):1057-63. PubMed ID: 639037 [No Abstract] [Full Text] [Related]
18. [Creatine kinase reaction in cardiac mitoplasts of rats. Its relation to oxidative phosphorylation]. Kuznetsov AV; Saks VA; Kupriianov VV Biull Vsesoiuznogo Kardiol Nauchn Tsentra AMN SSSR; 1985; 8(1):7-14. PubMed ID: 4005057 [No Abstract] [Full Text] [Related]
19. Inosine monophosphate accumulation in energy-deficient human skeletal muscle with reference to substrate availability, fibre types and AMP deaminase activity. Norman B Scand J Clin Lab Invest; 1995 Dec; 55(8):733-41. PubMed ID: 8903844 [No Abstract] [Full Text] [Related]
20. ATP from glycolysis is required for normal sodium homeostasis in resting fast-twitch rodent skeletal muscle. Okamoto K; Wang W; Rounds J; Chambers EA; Jacobs DO Am J Physiol Endocrinol Metab; 2001 Sep; 281(3):E479-88. PubMed ID: 11500303 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]