These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 188974)

  • 21. The oxidation mechanisms of thiosulphate and sulphide in Chlorobium thiosulphatophilum: roles of cytochrome c-551 and cytochrome c-553.
    Kusai K; Yamanaka T
    Biochim Biophys Acta; 1973 Nov; 325(2):304-14. PubMed ID: 4357558
    [No Abstract]   [Full Text] [Related]  

  • 22. Enzymes involved in the metabolism of thiosulfate by Thiobacillus thioparus. I. Survey of enzymes and properties of sulfite: cytochrome c oxidoreductase.
    Lyric RM; Suzuki I
    Can J Biochem; 1970 Mar; 48(3):334-43. PubMed ID: 5438321
    [No Abstract]   [Full Text] [Related]  

  • 23. Thiosulfate- and sulfide-dependent pyridine nucleotide reduction and gluconeogenesis in intact Thiobacillus neapolitanus.
    Roth CW; Hempfling WP; Conners JN; Vishniac WV
    J Bacteriol; 1973 May; 114(2):592-9. PubMed ID: 4145196
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Oxidative phosphorylation in Thiobacillus novellus.
    Cole JS; Aleem MI
    Biochem Biophys Res Commun; 1970 Feb; 38(4):736-43. PubMed ID: 4315352
    [No Abstract]   [Full Text] [Related]  

  • 25. [Effect of growth conditions on substrate phosphorylation during sulfite oxidation in Thiocapsa roseopersicina].
    Ivanovskiĭ RN; Petushkova IuP
    Mikrobiologiia; 1976; 45(6):1102-4. PubMed ID: 189165
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sulphide oxidation linked to the reduction of nitrate and nitrite in Thiobacillus denitrificans.
    Aminuddin M; Nicholas DJ
    Biochim Biophys Acta; 1973 Oct; 325(1):81-93. PubMed ID: 4770733
    [No Abstract]   [Full Text] [Related]  

  • 27. Enzymic sulphide oxidation by thiobacillus concretivorus.
    Moriarty DJ; Nicholas DJ
    Biochim Biophys Acta; 1969 Jun; 184(1):114-23. PubMed ID: 5791102
    [No Abstract]   [Full Text] [Related]  

  • 28. EFFECT OF THIOL-BINDING REAGENTS ON THE METABOLISM OF THIOSULFATE AND TETRATHIONATE BY THIOBACILLUS NEAPOLITANUS.
    TRUDINGER PA
    J Bacteriol; 1965 Mar; 89(3):617-25. PubMed ID: 14273636
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanism of thiosulfate oxidation by Thiobacillus intermedius.
    Charles AM
    Arch Biochem Biophys; 1969 Jan; 129(1):124-30. PubMed ID: 4303092
    [No Abstract]   [Full Text] [Related]  

  • 30. Active transport of amino acids by membrane vesicles of Thiobacillus neapolitanus.
    Matin A; Konings WN; Kuenen JG; Emmens M
    J Gen Microbiol; 1974 Aug; 83(2):311-8. PubMed ID: 4372294
    [No Abstract]   [Full Text] [Related]  

  • 31. Oxidation of elemental sulfur and sulfur compounds and CO2 fixation by Ferrobacillus ferrooxidans (Thiobacillus ferrooxidans).
    Silver M
    Can J Microbiol; 1970 Sep; 16(9):845-9. PubMed ID: 5506089
    [No Abstract]   [Full Text] [Related]  

  • 32. In vitro effects of cyclosporine on function of rat kidney mitochondria.
    Strzelecki T; Khauli RB; Kumar S; Menon M
    Transplant Proc; 1987 Feb; 19(1 Pt 2):1393-4. PubMed ID: 3152630
    [No Abstract]   [Full Text] [Related]  

  • 33. Yield coefficients of Thiobacillus neapolitanus in continuous culture.
    Hempfling WP; Vishniac W
    J Bacteriol; 1967 Mar; 93(3):874-8. PubMed ID: 6025430
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Production of thiosulphate during sulphide oxidation by mitochondria of the symbiont-containing bivalve Solemya reidi.
    O'Brien J; Vetter RD
    J Exp Biol; 1990 Mar; 149():133-48. PubMed ID: 2324669
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oxidation-reduction potentials of respiratory chain components in Thiobacillus A2.
    Kula TJ; Aleem MI; Wilson DF
    Biochim Biophys Acta; 1982 May; 680(2):142-51. PubMed ID: 6284218
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Purification and characterization of sulfide dehydrogenase from alkaliphilic chemolithoautotrophic sulfur-oxidizing bacteria.
    Sorokin DYu ; de Jong GA; Robertson LA; Kuenen GJ
    FEBS Lett; 1998 May; 427(1):11-4. PubMed ID: 9613590
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evidence for two pathways of thiosulfate oxidation in Starkeya novella (formerly Thiobacillus novellus).
    Kappler U; Friedrich CG; Trüper HG; Dahl C
    Arch Microbiol; 2001 Feb; 175(2):102-11. PubMed ID: 11285738
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Oxygen transfer to water and to sodium sulfite solutions.
    Liu MS; Branion RM; Duncan DW
    J Water Pollut Control Fed; 1972 Jan; 44(1):34-40. PubMed ID: 5009206
    [No Abstract]   [Full Text] [Related]  

  • 39. Lipophilic thiourea and thiouracil as inhibitors of oxidative phosphorylation.
    Bäuerlein E; Keihl R
    FEBS Lett; 1976 Jan; 61(1):68-71. PubMed ID: 1245224
    [No Abstract]   [Full Text] [Related]  

  • 40. Initiation of aerobic oxidation of sulfite by illuminated spinach chloroplasts.
    Asada K; Kiso K
    Eur J Biochem; 1973 Mar; 33(2):253-7. PubMed ID: 4144355
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.