These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 18898796)

  • 1. [Production of acetylmethylcarbinol and 2-3 butylene glycol by Bacillus cereus].
    DENTICE DI ACCADIA F
    Ann Inst Pasteur (Paris); 1947 Nov; 73(11):1114-6. PubMed ID: 18898796
    [No Abstract]   [Full Text] [Related]  

  • 2. A cyclic pathway for the bacterial dissimilation of 2, 3-butanediol, acetylmethylcarbinol, and diacetyl. I. General aspects of the 2, 3-butanediol cycle.
    JUNI E; HEYM GA
    J Bacteriol; 1956 Apr; 71(4):425-32. PubMed ID: 13319256
    [No Abstract]   [Full Text] [Related]  

  • 3. The conversion of 2,3-butylene glycol to acetylmethylcarbinol in bacterial fermentations of glucose.
    PARETSKY D; WERKMAN CH
    J Bacteriol; 1947 Mar; 53(3):377. PubMed ID: 20342016
    [No Abstract]   [Full Text] [Related]  

  • 4. The bacterial formation of acetylmethylcarbinol and 2:3-butylene glycol.
    HAPPOLD FC; SPENCER CP
    Biochim Biophys Acta; 1952 Jan; 8(1):18-29. PubMed ID: 14904465
    [No Abstract]   [Full Text] [Related]  

  • 5. The conversion of 2,3-butylene glycol to acetylmethylcarbinol in bacterial fermentations.
    PARETSKY D; WERKMAN CH
    Arch Biochem; 1947 Jul; 14(1-2):11-6. PubMed ID: 20251326
    [No Abstract]   [Full Text] [Related]  

  • 6. [Destruction of 2-3-butanediol and acetoin by microbes. II--Utilization of 2-3-butanediol by Bacillus megatherium].
    HOOREMAN M; AUBERT JP; LEMOIGNE M; DUPUY P
    Ann Inst Pasteur (Paris); 1950 Apr; 78(4):512-7. PubMed ID: 15425933
    [No Abstract]   [Full Text] [Related]  

  • 7. A cyclic pathway for the bacterial dissimilation of 2, 3-butanediol, acetylmethylcarbinol and diacetyl. II. The synthesis of diacetylmethylcarbinol from diacetyl, a new diphosphothiamin catalyzed reaction.
    HEYM GA; JUNI E
    J Bacteriol; 1956 Dec; 72(6):746-53. PubMed ID: 13398360
    [No Abstract]   [Full Text] [Related]  

  • 8. Cyclic pathway for the bacterial dissimilation of 2,3-butanediol, acetylmethylcarbinol, and diacetyl. III. A comparative study of 2,3-butanediol dehydrogenases from various microorganisms.
    JUNI E; HEYM GA
    J Bacteriol; 1957 Dec; 74(6):757-67. PubMed ID: 13502302
    [No Abstract]   [Full Text] [Related]  

  • 9. An investigation of the role of intra and extracellular enzymes in the production of acetoin and 2,3 butanediol by Bacillus polymyxa.
    BAHADUR K; RANGANAYAKI S
    Jpn J Microbiol; 1961 Jan; 5():11-5. PubMed ID: 13863959
    [No Abstract]   [Full Text] [Related]  

  • 10. The Bacillus subtilis ydjL (bdhA) gene encodes acetoin reductase/2,3-butanediol dehydrogenase.
    Nicholson WL
    Appl Environ Microbiol; 2008 Nov; 74(22):6832-8. PubMed ID: 18820069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of deletion of 2,3-butanediol dehydrogenase gene (bdhA) on acetoin production of Bacillus subtilis.
    Zhang J; Zhao X; Zhang J; Zhao C; Liu J; Tian Y; Yang L
    Prep Biochem Biotechnol; 2017 Sep; 47(8):761-767. PubMed ID: 28426331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acetoin production enhanced by manipulating carbon flux in a newly isolated Bacillus amyloliquefaciens.
    Zhang Y; Li S; Liu L; Wu J
    Bioresour Technol; 2013 Feb; 130():256-60. PubMed ID: 23306133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of 2,3-butylene glycol from whey by Klebsiella pneumoniae and Enterobacter aerogenes.
    Barrett EL; Collins EB; Hall BJ; Matoi SH
    J Dairy Sci; 1983 Dec; 66(12):2507-14. PubMed ID: 6365989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic engineering strategies for acetoin and 2,3-butanediol production: advances and prospects.
    Yang T; Rao Z; Zhang X; Xu M; Xu Z; Yang ST
    Crit Rev Biotechnol; 2017 Dec; 37(8):990-1005. PubMed ID: 28423947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineered Serratia marcescens for efficient (3R)-acetoin and (2R,3R)-2,3-butanediol production.
    Bai F; Dai L; Fan J; Truong N; Rao B; Zhang L; Shen Y
    J Ind Microbiol Biotechnol; 2015 May; 42(5):779-86. PubMed ID: 25663525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acetolactate synthase (AlsS) in Bacillus licheniformis WX-02: enzymatic properties and efficient functions for acetoin/butanediol and L-valine biosynthesis.
    Huo Y; Zhan Y; Wang Q; Li S; Yang S; Nomura CT; Wang C; Chen S
    Bioprocess Biosyst Eng; 2018 Jan; 41(1):87-96. PubMed ID: 29026998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of acetoin and 2,3-butanediol utilization in Bacillus licheniformis.
    Thanh TN; Jürgen B; Bauch M; Liebeke M; Lalk M; Ehrenreich A; Evers S; Maurer KH; Antelmann H; Ernst F; Homuth G; Hecker M; Schweder T
    Appl Microbiol Biotechnol; 2010 Aug; 87(6):2227-35. PubMed ID: 20524112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of radioactive diacetyl, acetoin, and 2,3-butylene glycol.
    Speckman RA; Collins EB
    Anal Biochem; 1981 Dec; 118(2):405-9. PubMed ID: 7337238
    [No Abstract]   [Full Text] [Related]  

  • 19. Pathogenesis of the uremic syndrome. Pharmacological studies on acetoin and 2,3-butylene glycol.
    THOLEN H; BIGLER F; STAUB H
    Experientia; 1961 Aug; 17():359-60. PubMed ID: 13776418
    [No Abstract]   [Full Text] [Related]  

  • 20. A detoxication route for acetaldehyde: metabolism of diacetyl, acetoin, and 2,3-butanediol in liver homogenate and perfused liver of rats.
    Otsuka M; Mine T; Ohuchi K; Ohmori S
    J Biochem; 1996 Feb; 119(2):246-51. PubMed ID: 8882713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.