These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 1889905)

  • 1. A computer program for the estimation of kinetic parameters of membrane currents based on the Gauss-Newton method.
    Grave de Peralta R; Hernández JL; Castellanos M; Garateix A
    Int J Biomed Comput; 1991; 28(1-2):47-52. PubMed ID: 1889905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization and decomposition of voltage-activated ionic currents using a fitting numerical method.
    Szücs A
    J Neurosci Methods; 1994 Mar; 51(2):155-62. PubMed ID: 7519698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Voltage-operated potassium currents in the somatic membrane of rat dorsal root ganglion neurons: ontogenetic aspects.
    Fedulova SA; Vasilyev DV; Veselovsky NS
    Neuroscience; 1998 Jul; 85(2):497-508. PubMed ID: 9622247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic characterization of the voltage-gated currents possessed by Xenopus embryo spinal neurons.
    Dale N
    J Physiol; 1995 Dec; 489 ( Pt 2)(Pt 2):473-88. PubMed ID: 8847641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective suppression of the slow-inactivating potassium currents by nootropics in molluscan neurons.
    Bukanova JV; Solntseva EI; Skrebitsky VG
    Int J Neuropsychopharmacol; 2002 Sep; 5(3):229-37. PubMed ID: 12366875
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NEUROFIT: software for fitting Hodgkin-Huxley models to voltage-clamp data.
    Willms AR
    J Neurosci Methods; 2002 Dec; 121(2):139-50. PubMed ID: 12468004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two fast transient current components during voltage clamp on snail neurons.
    Neher E
    J Gen Physiol; 1971 Jul; 58(1):36-53. PubMed ID: 5564761
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Postnatal maturation of rat hypothalamoneurohypophysial neurons: evidence for a developmental decrease in calcium entry during action potentials.
    Widmer H; Amerdeil H; Fontanaud P; Desarménien MG
    J Neurophysiol; 1997 Jan; 77(1):260-71. PubMed ID: 9120568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of extracellular pH on voltage-gated Na+, K+ and Ca2+ currents in isolated rat CA1 neurons.
    Tombaugh GC; Somjen GG
    J Physiol; 1996 Jun; 493 ( Pt 3)(Pt 3):719-32. PubMed ID: 8799894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic description of the activation of the delayed potassium current of the land snail Zachrysia guanensis in terms of the Hodgkin-Huxley formalism.
    Hernández Cáceres JL; De Peralta Menéndez RG; Castellanos Renté M; Garateix Fleites A
    Int J Biomed Comput; 1991 Dec; 29(3-4):227-33. PubMed ID: 1778638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A voltage-dependent potassium current in rabbit coronary artery smooth muscle cells.
    Volk KA; Matsuda JJ; Shibata EF
    J Physiol; 1991 Aug; 439():751-68. PubMed ID: 1910087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A fast transient potassium current in thalamic relay neurons: kinetics of activation and inactivation.
    Huguenard JR; Coulter DA; Prince DA
    J Neurophysiol; 1991 Oct; 66(4):1304-15. PubMed ID: 1662262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potassium currents in precursor cells isolated from the anterior subventricular zone of the neonatal rat forebrain.
    Stewart RR; Zigova T; Luskin MB
    J Neurophysiol; 1999 Jan; 81(1):95-102. PubMed ID: 9914270
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A- and C-type rat nodose sensory neurons: model interpretations of dynamic discharge characteristics.
    Schild JH; Clark JW; Hay M; Mendelowitz D; Andresen MC; Kunze DL
    J Neurophysiol; 1994 Jun; 71(6):2338-58. PubMed ID: 7523613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gating of Shaker K+ channels: I. Ionic and gating currents.
    Stefani E; Toro L; Perozo E; Bezanilla F
    Biophys J; 1994 Apr; 66(4):996-1010. PubMed ID: 8038403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrophysiological and pharmacological characterization of a mammalian Shaw channel expressed in NIH 3T3 fibroblasts.
    Kanemasa T; Gan L; Perney TM; Wang LY; Kaczmarek LK
    J Neurophysiol; 1995 Jul; 74(1):207-17. PubMed ID: 7472324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. K+ channels in cardiomyocytes of the pulmonate snail helix.
    Kodirov SA; Zhuravlev VL; Pavlenko VK; Safonova TA; Brachmann J
    J Membr Biol; 2004 Feb; 197(3):145-54. PubMed ID: 15042346
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Roles of ionic currents in lamprey CpG neurons: a modeling study.
    Huss M; Lansner A; Wallén P; El Manira A; Grillner S; Kotaleski JH
    J Neurophysiol; 2007 Apr; 97(4):2696-711. PubMed ID: 17287443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activators of protein kinase C mimic serotonin-induced modulation of a voltage-dependent potassium current in pleural sensory neurons of Aplysia.
    Sugita S; Baxter DA; Byrne JH
    J Neurophysiol; 1994 Sep; 72(3):1240-9. PubMed ID: 7807208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Voltage-dependent potassium channels in activated rat microglia.
    Nörenberg W; Gebicke-Haerter PJ; Illes P
    J Physiol; 1994 Feb; 475(1):15-32. PubMed ID: 7514664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.