These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 18900)

  • 21. Evidence for multiple dopamine receptors involved in the modulation of acetylcholine release in the striatum.
    Hársing LG; Vizi ES
    Pol J Pharmacol Pharm; 1985; 37(3):383-96. PubMed ID: 2866504
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interactions between GABA, dopamine, acetylcholine, and glutamate-containing neurons in the extrapyramidal and limbic systems.
    Bartholini G; Scatton B; Worms P; Zivkovic B; Lloyd KG
    Adv Biochem Psychopharmacol; 1981; 30():119-28. PubMed ID: 6120626
    [No Abstract]   [Full Text] [Related]  

  • 23. Molecular mechanisms in the actions of morphine and viminol (R2) on rat striatum.
    Carenzi A; Guidotti A; Revuelta A; Costa E
    J Pharmacol Exp Ther; 1975 Aug; 194(2):311-8. PubMed ID: 239224
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dopamine metabolism in the rat retina and brain after acute and repeated treatment with neuroleptics.
    Scatton B; Dedek J; Korf J
    Adv Biochem Psychopharmacol; 1978; 19():373-5. PubMed ID: 29452
    [No Abstract]   [Full Text] [Related]  

  • 25. S 16924 ((R)-2-[1-[2-(2,3-dihydro-benzo[1,4] dioxin-5-Yloxy)-ethyl]-pyrrolidin-3yl]-1-(4-fluoro-phenyl)-ethanone), a novel, potential antipsychotic with marked serotonin (5-HT)1A agonist properties: I. Receptorial and neurochemical profile in comparison with clozapine and haloperidol.
    Millan MJ; Gobert A; Newman-Tancredi A; Audinot V; Lejeune F; Rivet JM; Cussac D; Nicolas JP; Muller O; Lavielle G
    J Pharmacol Exp Ther; 1998 Sep; 286(3):1341-55. PubMed ID: 9732398
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Participation of an endogenous Ca++-blinding protein activator in the development of drug-induced supersensitivity of striatal dopamine receptors.
    Gnegy M; Uzunov P; Costa E
    J Pharmacol Exp Ther; 1977 Sep; 202(3):558-64. PubMed ID: 19618
    [No Abstract]   [Full Text] [Related]  

  • 27. Theoretical implications of tolerance development in DA, ACh and GABA turnover after neuroleptic chronic treatment.
    Agnati LF; Zini I; Lenzi P; Cortelli P; Battistini N; Bernardi P
    Boll Soc Ital Biol Sper; 1981 Jun; 57(11):1261-6. PubMed ID: 6116494
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A comparison of the effects of acute and one year's continuous neuroleptic treatment on the release of [3H]glutamate and [3H]acetylcholine from rat striatal slices.
    Kerwin RW; Rupniak NM; Jenner P; Marsden CD
    Neuroscience; 1984 Jan; 11(1):205-10. PubMed ID: 6143281
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Differential actions of classical and atypical neuroleptics on mouse nigrostriatal neurons.
    Wood PL; McQuade PS; Etienne P; Lal S; Nair NP
    Prog Neuropsychopharmacol Biol Psychiatry; 1983; 7(4-6):765-8. PubMed ID: 6141617
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tardive dyskinesia: a role for the endogenous opioid system.
    Sandyk R
    Med Hypotheses; 1986 Jan; 19(1):71-4. PubMed ID: 2871480
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Differential alterations in striatal acetylcholine function in rats during 12 months' continuous administration of haloperidol, sulpiride, or clozapine.
    Rupniak NM; Briggs RS; Petersen MM; Mann S; Reavill C; Jenner P; Marsden CD
    Clin Neuropharmacol; 1986; 9(3):282-92. PubMed ID: 3719573
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Striatal dopamine D2-receptor blockade by typical and atypical neuroleptics.
    Brücke T; Roth J; Podreka I; Strobl R; Wenger S; Asenbaum S
    Lancet; 1992 Feb; 339(8791):497. PubMed ID: 1346852
    [No Abstract]   [Full Text] [Related]  

  • 33. An analysis at synaptic level of the morphine action in striatum and N. accumbens: dopamine and acetylcholine interactions.
    Costa E; Cheney DL; Racagni G; Zsilla G
    Life Sci; 1975 Jul; 17(1):1-8. PubMed ID: 167253
    [No Abstract]   [Full Text] [Related]  

  • 34. The measurement of acetylcholine turnover rate in brain structures.
    Racagni G; Cheney DL; Zsilla G; Costa E
    Neuropharmacology; 1976 Dec; 15(12):723-36. PubMed ID: 796753
    [No Abstract]   [Full Text] [Related]  

  • 35. Correlation between catalepsy and dopamine decrease in the rat striatum induced by neuroleptics.
    Honma T; Fukushima H
    Neuropharmacology; 1976 Oct; 15(10):601-7. PubMed ID: 1033478
    [No Abstract]   [Full Text] [Related]  

  • 36. The effects of antipsychotics on the turnover rate of GABA and acetylcholine in rat brain nuclei.
    Marco E; Mao CC; Cheney DL; Revuelta A; Costa E
    Nature; 1976 Nov; 264(5584):363-5. PubMed ID: 12475
    [No Abstract]   [Full Text] [Related]  

  • 37. Acidic dopamine metabolites in cortical areas of the rat brain: localization and effects of drug.
    Westerink BH; Korf J
    Brain Res; 1976 Aug; 113(2):429-34. PubMed ID: 953748
    [No Abstract]   [Full Text] [Related]  

  • 38. Effects of D-amphetamine and antipsychotic drug administration on striatal tyramine levels in the mouse.
    Juorio AV
    Brain Res; 1977 Apr; 126(1):181-4. PubMed ID: 15705
    [No Abstract]   [Full Text] [Related]  

  • 39. Reversal of the actions of morphine on mesocortical dopamine metabolism in the rat by the kappa agonist MR-2034: tentative mu-2 opioid control of mesocortical dopaminergic projections.
    Kim HS; Iyengar S; Wood PL
    Life Sci; 1987 Oct; 41(14):1711-5. PubMed ID: 2821337
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hypokinesia in mice and catalepsy in rats elicited by morphine associated with antidopaminergic agents, including atypical neuroleptics.
    Barghon R; Protais P; Colboc O; Costentin J
    Neurosci Lett; 1981 Nov; 27(1):69-73. PubMed ID: 6120489
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.