These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 1890420)

  • 1. Regional specificity of developing reticulospinal, vestibulospinal, and vestibulo-ocular projections in the chicken embryo.
    Glover JC; Petursdottir G
    J Neurobiol; 1991 Jun; 22(4):353-76. PubMed ID: 1890420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vestibulo-ocular projections in the 11-day chicken embryo: pathway specificity.
    Pétursdóttir G
    J Comp Neurol; 1990 Jul; 297(2):283-97. PubMed ID: 2164534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pathway specificity of reticulospinal and vestibulospinal projections in the 11-day chicken embryo.
    Glover JC; Petursdottir G
    J Comp Neurol; 1988 Apr; 270(1):25-38, 60-1. PubMed ID: 3372737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metamorphosis of spinal-projecting neurons in the brain of the sea lamprey during transformation of the larva to adult: normal anatomy and response to axotomy.
    Swain GP; Ayers J; Selzer ME
    J Comp Neurol; 1995 Nov; 362(4):453-67. PubMed ID: 8636461
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The organization of vestibulo-ocular and vestibulospinal projections in the chicken embryo.
    Glover JC
    Eur J Morphol; 1994 Aug; 32(2-4):193-200. PubMed ID: 7803166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-segmental innervation of single pontine reticulospinal axons in the cervico-thoracic region of the cat: anterograde PHA-L tracing study.
    Matsuyama K; Takakusaki K; Nakajima K; Mori S
    J Comp Neurol; 1997 Jan; 377(2):234-50. PubMed ID: 8986883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of early brainstem projections to the tail spinal cord of Xenopus.
    Nordlander RH; Baden ST; Ryba TM
    J Comp Neurol; 1985 Jan; 231(4):519-29. PubMed ID: 3968253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphology of single pontine reticulospinal axons in the lumbar enlargement of the cat: a study using the anterograde tracer PHA-L.
    Matsuyama K; Mori F; Kuze B; Mori S
    J Comp Neurol; 1999 Aug; 410(3):413-30. PubMed ID: 10404409
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Afferent connections of the rostral medulla of the cat: a neural substrate for midbrain-medullary interactions in the modulation of pain.
    Abols IA; Basbaum AI
    J Comp Neurol; 1981 Sep; 201(2):285-97. PubMed ID: 7287930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Serotoninergic and nonserotoninergic neurons in the medullary raphe system have axon collateral projections to autonomic and somatic cell groups in the medulla and spinal cord.
    Allen GV; Cechetto DF
    J Comp Neurol; 1994 Dec; 350(3):357-66. PubMed ID: 7533797
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinguishing rat brainstem reticulospinal nuclei by their neuronal morphology. II. Pontine and mesencephalic nuclei.
    Newman DB
    J Hirnforsch; 1985; 26(4):385-418. PubMed ID: 4067279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nuclear origins of brainstem reticulocortical systems in the rat.
    Newman DB; Liu RP
    Am J Anat; 1987 Mar; 178(3):279-99. PubMed ID: 3034043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Medullary and spinal efferents of the pedunculopontine tegmental nucleus and adjacent mesopontine tegmentum in the rat.
    Rye DB; Lee HJ; Saper CB; Wainer BH
    J Comp Neurol; 1988 Mar; 269(3):315-41. PubMed ID: 2453532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The development of brain stem projections to the spinal cord in the chicken embryo.
    Glover JC
    Brain Res Bull; 1993; 30(3-4):265-71. PubMed ID: 8457875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The onset and development of descending pathways to the spinal cord in the chick embryo.
    Okado N; Oppenheim RW
    J Comp Neurol; 1985 Feb; 232(2):143-61. PubMed ID: 3973087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinguishing rat brainstem reticulospinal nuclei by their neuronal morphology. I. Medullary nuclei.
    Newman DB
    J Hirnforsch; 1985; 26(2):187-226. PubMed ID: 2410489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pontine reticulospinal projections in the neonatal mouse: Internal organization and axon trajectories.
    Sivertsen MS; Perreault MC; Glover JC
    J Comp Neurol; 2016 Apr; 524(6):1270-91. PubMed ID: 26400815
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reticulospinal fibers of the opossum, Didelphis virginiana. I. Origin.
    Beran RL; Martin GF
    J Comp Neurol; 1971 Apr; 141(4):453-65. PubMed ID: 4101679
    [No Abstract]   [Full Text] [Related]  

  • 19. Cytoarchitecture of spinal-projecting neurons in the brain of the larval sea lamprey.
    Swain GP; Snedeker JA; Ayers J; Selzer ME
    J Comp Neurol; 1993 Oct; 336(2):194-210. PubMed ID: 8245215
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distribution of reticulospinal neurons in the chicken by retrograde transport of WGA-HRP.
    Hassouna E; Yamamoto M; Imagawa T; Uehara M
    Tissue Cell; 2001 Apr; 33(2):141-7. PubMed ID: 11392666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.