These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 1890942)

  • 21. Optimization of fast neutron spectra available for neutron capture therapy.
    Pfister G; Hehn G; el-Husseini F
    Strahlenther Onkol; 1989; 165(2-3):107-9. PubMed ID: 2494709
    [No Abstract]   [Full Text] [Related]  

  • 22. Dosimetry of BNCT beams with novel thermoluminescent detectors.
    Bilski P; Budzanowski M; Ochab E; Olko P; Czopyk Ł
    Radiat Prot Dosimetry; 2004; 110(1-4):623-6. PubMed ID: 15353719
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reactor moderated intermediate energy neutron beams for neutron capture therapy.
    Less TJ; Brugger RM
    Strahlenther Onkol; 1989; 165(2-3):87-90. PubMed ID: 2494752
    [No Abstract]   [Full Text] [Related]  

  • 24. Head phantom experiment and calculation for NCT using various neutron beams.
    Matsumoto T; Aizawa O
    Strahlenther Onkol; 1989; 165(2-3):98-100. PubMed ID: 2494756
    [No Abstract]   [Full Text] [Related]  

  • 25. Applicability of the 2-nitroimidazole-sodium borocaptate-10B conjugate, TX-2060, as a 10B-carrier in boron neutron capture therapy.
    Masunaga S; Nagasawa H; Hiraoka M; Sakurai Y; Uto Y; Hori H; Nagata K; Suzuki M; Maruhashi A; Kinashi Y; Ono K
    Anticancer Res; 2004; 24(5A):2975-83. PubMed ID: 15517904
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Monte Carlo simulation of the response of ESR dosimeters added with gadolinium exposed to thermal, epithermal and fast neutrons.
    Marrale M; Basile S; Brai M; Longo A
    Appl Radiat Isot; 2009 Jul; 67(7-8 Suppl):S186-9. PubMed ID: 19380235
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dosimetric effects of beam size and collimation of epithermal neutrons for boron neutron capture therapy.
    Yanch JC; Harling OK
    Radiat Res; 1993 Aug; 135(2):131-45. PubMed ID: 8367586
    [TBL] [Abstract][Full Text] [Related]  

  • 28. EGF-receptor targeted liposomes with boronated acridine: growth inhibition of cultured glioma cells after neutron irradiation.
    Kullberg EB; Wei Q; Capala J; Giusti V; Malmström PU; Gedda L
    Int J Radiat Biol; 2005 Aug; 81(8):621-9. PubMed ID: 16298943
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Neutron capturing irradiation: principle, current results and perspectives].
    Pignol JP; Chauvel P
    Bull Cancer Radiother; 1995; 82(3):283-97. PubMed ID: 8554878
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biomedical irradiation system for boron neutron capture therapy at the Kyoto University Reactor.
    Kobayashi T; Kanda K; Ujeno Y; Ishida MR
    Basic Life Sci; 1990; 54():321-39. PubMed ID: 2176458
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Study of the absorbed doses of gamma-neutron irradiation from the channels of the BR-10 reactor].
    Kapchigashev SP; Obaturov GM; Tiatte EG; Aristarkhov NN; Efimov IA
    Med Radiol (Mosk); 1977 Oct; 22(10):64-7. PubMed ID: 916844
    [No Abstract]   [Full Text] [Related]  

  • 32. Neutron therapy in the G.D.R.III. Estimation of dose distribution in phantome (author's transl).
    Matschke S; Welker K
    Arch Geschwulstforsch; 1975; 45(8):737-45. PubMed ID: 1230121
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The use of 10B to enhance the tumour dose in fast-neutron therapy.
    Waterman FM; Kuchnir FT; Skaggs LS; Bewley DK; Page BC; Attix FH
    Phys Med Biol; 1978 Jul; 23(4):592-602. PubMed ID: 100793
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transport calculations of the influence of physical factors on depth-dose distributions in boron neutron capture therapy.
    Matsumoto T
    Phys Med Biol; 1990 Jul; 35(7):971-8. PubMed ID: 2117293
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The influence of heavy water on boron requirements for neutron capture therapy.
    Wallace SA; Mathur JN; Allen BJ
    Med Phys; 1995 May; 22(5):585-90. PubMed ID: 7643797
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neutron capture therapy beams at the MIT Research Reactor.
    Choi JR; Clement SD; Harling OK; Zamenhof RG
    Basic Life Sci; 1990; 54():201-18. PubMed ID: 2176454
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A fast neutron source for cultured cell irradiation.
    Prior RM; Moss AJ; Erichsen EA; Eason CS; Baker ML; Dalrymple GV
    Radiology; 1976 May; 119(2):463-5. PubMed ID: 1265278
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lethal effect and potentially lethal damage recovery in cultured mammalian cells irradiated by neutron-capture beams.
    Maki H
    Int J Radiat Biol; 1989 Mar; 55(3):397-409. PubMed ID: 2564036
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A calculational study of tangential and radial beams in HIFAR for neutron capture therapy.
    Harrington BV
    Basic Life Sci; 1990; 54():97-107. PubMed ID: 2268250
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Neutron dosimetry in the containment of a pressurized water reactor using a neutron-sensitive beta/gamma dosimetry system.
    Kralick SC; Watson JE; Croslin SW
    Health Phys; 1986 Jun; 50(6):761-8. PubMed ID: 3710784
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.