BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 1891358)

  • 1. SP6 RNA polymerase stutters when initiating from an AAA... sequence.
    Cunningham PR; Weitzmann CJ; Ofengand J
    Nucleic Acids Res; 1991 Sep; 19(17):4669-73. PubMed ID: 1891358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A two-base-pair substitution in T7 promoter by SP6 promoter-specific base pairs alone abolishes T7 promoter activity but reveals SP6 promoter activity.
    Lee SS; Kang C
    Biochem Int; 1992 Feb; 26(1):1-5. PubMed ID: 1616486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. T7 DNA-dependent RNA polymerase can transcribe RNA from tick-borne encephalitis virus (TBEV) cDNA with SP6 promoter.
    Dobrikova EY; Pletnev AG; Karamyshev VN; Morozova OV
    FEBS Lett; 1996 Mar; 382(3):327-9. PubMed ID: 8605995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Effect of nucleotide replacement on the effectiveness and specificity of the SP6 promotor].
    Nazarenko IA; Gorn VV
    Mol Biol (Mosk); 1991; 25(6):1661-6. PubMed ID: 1813808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous in vitro evolution of bacteriophage RNA polymerase promoters.
    Breaker RR; Banerji A; Joyce GF
    Biochemistry; 1994 Oct; 33(39):11980-6. PubMed ID: 7522554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcription from bacteriophage T7 and SP6 RNA polymerase promoters in the presence of 3'-deoxyribonucleoside 5'-triphosphate chain terminators.
    Axelrod VD; Kramer FR
    Biochemistry; 1985 Oct; 24(21):5716-23. PubMed ID: 3002422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The low processivity of T7 RNA polymerase over the initially transcribed sequence can limit productive initiation in vivo.
    Lopez PJ; Guillerez J; Sousa R; Dreyfus M
    J Mol Biol; 1997 May; 269(1):41-51. PubMed ID: 9192999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. T7 promoter contacts essential for promoter activity in vivo.
    Ikeda RA; Ligman CM; Warshamana S
    Nucleic Acids Res; 1992 May; 20(10):2517-24. PubMed ID: 1598210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SP6 RNA polymerase efficiently synthesizes RNA from short double-stranded DNA templates.
    Stump WT; Hall KB
    Nucleic Acids Res; 1993 Nov; 21(23):5480-4. PubMed ID: 7505427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two base pairs at -9 and -8 distinguish between the bacteriophage T7 and SP6 promoters.
    Lee SS; Kang C
    J Biol Chem; 1993 Sep; 268(26):19299-304. PubMed ID: 8366080
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Template strand gap bypass is a general property of prokaryotic RNA polymerases: implications for elongation mechanisms.
    Liu J; Doetsch PW
    Biochemistry; 1996 Nov; 35(47):14999-5008. PubMed ID: 8942666
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequences of three promoters for the bacteriophage SP6 RNA polymerase.
    Brown JE; Klement JF; McAllister WT
    Nucleic Acids Res; 1986 Apr; 14(8):3521-6. PubMed ID: 3010240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcription initiation site selection and abortive initiation cycling of phage SP6 RNA polymerase.
    Nam SC; Kang CW
    J Biol Chem; 1988 Dec; 263(34):18123-7. PubMed ID: 3192528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coupling of rRNA transcription and ribosomal assembly in vivo. Formation of active ribosomal subunits in Escherichia coli requires transcription of rRNA genes by host RNA polymerase which cannot be replaced by bacteriophage T7 RNA polymerase.
    Lewicki BT; Margus T; Remme J; Nierhaus KH
    J Mol Biol; 1993 Jun; 231(3):581-93. PubMed ID: 8515441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. All 4 bases of both strands at -9 and -8 in T7 promoter are needed to be substituted by SP6-specific bases to switch promoter specificity.
    Lee SS; Park SK; Cho IH; Kang C
    Biochem Mol Biol Int; 1993 Dec; 31(6):1017-21. PubMed ID: 8193585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of multiple mutations at the conserved TATA sequence of bacteriophage SP6 promoter on transcription efficiency.
    Kim SS; Hong Y; Kang C
    Biochem Mol Biol Int; 1993 Sep; 31(1):153-9. PubMed ID: 8260939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of specific contacts in T3 RNA polymerase-promoter interactions: kinetic analysis using small synthetic promoters.
    Schick C; Martin CT
    Biochemistry; 1993 Apr; 32(16):4275-80. PubMed ID: 8476856
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specific contacts between the bacteriophage T3, T7, and SP6 RNA polymerases and their promoters.
    Jorgensen ED; Durbin RK; Risman SS; McAllister WT
    J Biol Chem; 1991 Jan; 266(1):645-51. PubMed ID: 1985921
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nucleotide sequence and expression of the cloned gene of bacteriophage SP6 RNA polymerase.
    Kotani H; Ishizaki Y; Hiraoka N; Obayashi A
    Nucleic Acids Res; 1987 Mar; 15(6):2653-64. PubMed ID: 3031606
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcription by SP6 RNA polymerase exhibits an ATP dependence that is influenced by promoter topology.
    Taylor DR; Mathews MB
    Nucleic Acids Res; 1993 Apr; 21(8):1927-33. PubMed ID: 8493106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.