These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 1891828)

  • 1. Elasticity of tissues involved in accommodation.
    van Alphen GW; Graebel WP
    Vision Res; 1991; 31(7-8):1417-38. PubMed ID: 1891828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo determination of the biomechanical properties of the component elements of the accommodation mechanism.
    Beers AP; Van Der Heijde GL
    Vision Res; 1994 Nov; 34(21):2897-905. PubMed ID: 7975324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of a simple mechanical model of accommodation to the aging eye.
    Wyatt HJ
    Vision Res; 1993; 33(5-6):731-8. PubMed ID: 8351845
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The zonules selectively alter the shape of the lens during accommodation based on the location of their anchorage points.
    Nankivil D; Maceo Heilman B; Durkee H; Manns F; Ehrmann K; Kelly S; Arrieta-Quintero E; Parel JM
    Invest Ophthalmol Vis Sci; 2015 Feb; 56(3):1751-60. PubMed ID: 25698707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Change in the accommodative force on the lens of the human eye with age.
    Hermans EA; Dubbelman M; van der Heijde GL; Heethaar RM
    Vision Res; 2008 Jan; 48(1):119-26. PubMed ID: 18054980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The ciliary body in accommodation.
    Fisher RF
    Trans Ophthalmol Soc U K (1962); 1986; 105 ( Pt 2)():208-19. PubMed ID: 3467496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Some aspects of the mechanics of accommodation.
    Wyatt HJ
    Vision Res; 1988; 28(1):75-86. PubMed ID: 3414001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optomechanical response of human and monkey lenses in a lens stretcher.
    Manns F; Parel JM; Denham D; Billotte C; Ziebarth N; Borja D; Fernandez V; Aly M; Arrieta E; Ho A; Holden B
    Invest Ophthalmol Vis Sci; 2007 Jul; 48(7):3260-8. PubMed ID: 17591897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mechanism of lenticular accommodation in chicks.
    Glasser A; Murphy CJ; Troilo D; Howland HC
    Vision Res; 1995 Jun; 35(11):1525-40. PubMed ID: 7667911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The force of contraction of the human ciliary muscle during accommodation.
    Fisher RF
    J Physiol; 1977 Aug; 270(1):51-74. PubMed ID: 915798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of the lens capsule on the mechanical accommodative response in a lens stretcher.
    Ziebarth NM; Borja D; Arrieta E; Aly M; Manns F; Dortonne I; Nankivil D; Jain R; Parel JM
    Invest Ophthalmol Vis Sci; 2008 Oct; 49(10):4490-6. PubMed ID: 18515568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Edinger-Westphal and pharmacologically stimulated accommodative refractive changes and lens and ciliary process movements in rhesus monkeys.
    Ostrin LA; Glasser A
    Exp Eye Res; 2007 Feb; 84(2):302-13. PubMed ID: 17137577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new theory of human accommodation: cilio-zonular compression of the lens equator.
    Wilson RS
    Trans Am Ophthalmol Soc; 1993; 91():401-16; discussion 416-9. PubMed ID: 8140701
    [No Abstract]   [Full Text] [Related]  

  • 14. Experimental protocols for ex vivo lens stretching tests to investigate the biomechanics of the human accommodation apparatus.
    Pinilla Cortés L; Burd HJ; Montenegro GA; D'Antin JC; Mikielewicz M; Barraquer RI; Michael R
    Invest Ophthalmol Vis Sci; 2015 May; 56(5):2926-32. PubMed ID: 26024078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Age-dependence of the optomechanical responses of ex vivo human lenses from India and the USA, and the force required to produce these in a lens stretcher: the similarity to in vivo disaccommodation.
    Augusteyn RC; Mohamed A; Nankivil D; Veerendranath P; Arrieta E; Taneja M; Manns F; Ho A; Parel JM
    Vision Res; 2011 Jul; 51(14):1667-78. PubMed ID: 21658404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A study for accommodating the human crystalline lens by finite element simulation.
    Liu Z; Wang B; Xu X; Wang C
    Comput Med Imaging Graph; 2006; 30(6-7):371-6. PubMed ID: 17095189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of human crystalline lens accommodation.
    Chien CH; Huang T; Schachar RA
    J Biomech; 2006; 39(4):672-80. PubMed ID: 16023655
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stretch-dependent changes in surface profiles of the human crystalline lens during accommodation: a finite element study.
    Pour HM; Kanapathipillai S; Zarrabi K; Manns F; Ho A
    Clin Exp Optom; 2015 Mar; 98(2):126-37. PubMed ID: 25727940
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Morpho-functional characteristics of lens ciliary body as a key mechanism of accommodation in human eye].
    Svetlova OV; Makarov FN; Kotliar KE; Zaseeva MV; Koshits IN
    Morfologiia; 2003; 123(3):7-16. PubMed ID: 12942818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accommodative ciliary body and lens function in rhesus monkeys, I: normal lens, zonule and ciliary process configuration in the iridectomized eye.
    Croft MA; Glasser A; Heatley G; McDonald J; Ebbert T; Dahl DB; Nadkarni NV; Kaufman PL
    Invest Ophthalmol Vis Sci; 2006 Mar; 47(3):1076-86. PubMed ID: 16505044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.