These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1233 related articles for article (PubMed ID: 18921985)
1. Predicting hydrogen-bond strengths from acid-base molecular properties. The pK(a) slide rule: toward the solution of a long-lasting problem. Gilli P; Pretto L; Bertolasi V; Gilli G Acc Chem Res; 2009 Jan; 42(1):33-44. PubMed ID: 18921985 [TBL] [Abstract][Full Text] [Related]
2. A challenge to chemical intuition: donor-acceptor interactions in H3B-L and H2B+-L (L=CO; EC5H5, E=N-Bi). Erhardt S; Frenking G Chemistry; 2006 Jun; 12(17):4620-9. PubMed ID: 16598798 [TBL] [Abstract][Full Text] [Related]
3. The nature of the chemical bond revisited: an energy-partitioning analysis of nonpolar bonds. Kovács A; Esterhuysen C; Frenking G Chemistry; 2005 Mar; 11(6):1813-25. PubMed ID: 15672434 [TBL] [Abstract][Full Text] [Related]
4. Covalent versus electrostatic nature of the strong hydrogen bond: discrimination among single, double, and asymmetric single-well hydrogen bonds by variable-temperature X-ray crystallographic methods in beta-diketone enol RAHB systems. Gilli P; Bertolasi V; Pretto L; Ferretti V; Gilli G J Am Chem Soc; 2004 Mar; 126(12):3845-55. PubMed ID: 15038739 [TBL] [Abstract][Full Text] [Related]
5. The low barrier hydrogen bond (LBHB) proposal revisited: the case of the Asp... His pair in serine proteases. Schutz CN; Warshel A Proteins; 2004 May; 55(3):711-23. PubMed ID: 15103633 [TBL] [Abstract][Full Text] [Related]
6. Direct estimate of the strength of conjugation and hyperconjugation by the energy decomposition analysis method. Fernández I; Frenking G Chemistry; 2006 Apr; 12(13):3617-29. PubMed ID: 16502455 [TBL] [Abstract][Full Text] [Related]
7. Theoretical study of the symmetry of the (OH...O)- hydrogen bonds in vinyl alcohol-vinyl alcoholate systems. Chandra AK; Zeegers-Huyskens T J Org Chem; 2003 May; 68(9):3618-25. PubMed ID: 12713370 [TBL] [Abstract][Full Text] [Related]
8. Theoretical investigation of hydrogen bonds between CO and HNF2, H2NF, and HNO. Li AY J Phys Chem A; 2006 Sep; 110(37):10805-16. PubMed ID: 16970375 [TBL] [Abstract][Full Text] [Related]
9. Theoretical study of proton encircling modes in proton sponges with tetraamido/diamino quaternized macrocycles: the role of pi-conjugated and aliphatic bridges. Jiang N; Ma J Phys Chem Chem Phys; 2009 Jul; 11(25):5100-9. PubMed ID: 19562141 [TBL] [Abstract][Full Text] [Related]
10. The influence of short strong hydrogen bonding on the structure and the physicochemical properties of alkyl-N-iminodiacetic acids in solid state and aqueous systems. Häggman L; Lindblad C; Oskarsson H; Ullström AS; Persson I J Am Chem Soc; 2003 Mar; 125(12):3631-41. PubMed ID: 12643726 [TBL] [Abstract][Full Text] [Related]
11. Characterization of fluxional hydrogen-bonded complexes of acetic acid and acetate by NMR: geometries and isotope and solvent effects. Tolstoy PM; Schah-Mohammedi P; Smirnov SN; Golubev NS; Denisov GS; Limbach HH J Am Chem Soc; 2004 May; 126(17):5621-34. PubMed ID: 15113234 [TBL] [Abstract][Full Text] [Related]
12. N-H...O, O-H...O, and C-H...O hydrogen bonds in protein-ligand complexes: strong and weak interactions in molecular recognition. Sarkhel S; Desiraju GR Proteins; 2004 Feb; 54(2):247-59. PubMed ID: 14696187 [TBL] [Abstract][Full Text] [Related]
13. Manifestation of stereoelectronic effects on the calculated carbon-hydrogen bond lengths and one-bond 1J(C-H) NMR coupling constants. Relative acceptor ability of the carbonyl (C=O), thiocarbonyl (C=S), and methylidene (C=CH2) groups toward C-H donor bonds. Martínez-Mayorga K; Juaristi E; Cuevas G J Org Chem; 2004 Oct; 69(21):7266-76. PubMed ID: 15471480 [TBL] [Abstract][Full Text] [Related]
14. Reactions between aromatic hydrocarbons and heterocycles: covalent and proton-bound dimer cations of benzene/pyridine. El-Shall MS; Ibrahim YM; Alsharaeh EH; Meot-Ner Mautner M; Watson SP J Am Chem Soc; 2009 Jul; 131(29):10066-76. PubMed ID: 19621961 [TBL] [Abstract][Full Text] [Related]
15. Cation-anion hydrogen bonds: a new class of hydrogen bonds that extends their strength beyond the covalent limit. A theoretical characterization. D'Oria E; Novoa JJ J Phys Chem A; 2011 Nov; 115(45):13114-23. PubMed ID: 21942671 [TBL] [Abstract][Full Text] [Related]
16. Biological activity predictions, crystallographic comparison and hydrogen bonding analysis of cholane derivatives. Rajnikant ; Dinesh ; Chand B Indian J Biochem Biophys; 2007 Dec; 44(6):458-69. PubMed ID: 18320845 [TBL] [Abstract][Full Text] [Related]
17. Interaction geometries and energies of hydrogen bonds to C[double bond]O and C[double bond]S acceptors: a comparative study. Wood PA; Pidcock E; Allen FH Acta Crystallogr B; 2008 Aug; 64(Pt 4):491-6. PubMed ID: 18641451 [TBL] [Abstract][Full Text] [Related]
18. Strong and weak hydrogen bonds in the protein-ligand interface. Panigrahi SK; Desiraju GR Proteins; 2007 Apr; 67(1):128-141. PubMed ID: 17206656 [TBL] [Abstract][Full Text] [Related]
19. Interpretation of hydrogen bonding in the weak and strong regions using conceptual DFT descriptors. Ozen AS; De Proft F; Aviyente V; Geerlings P J Phys Chem A; 2006 May; 110(17):5860-8. PubMed ID: 16640382 [TBL] [Abstract][Full Text] [Related]
20. Supramolecular silanol chemistry in the gas phase. Topological (AIM) and population (NBO) analyses of hydrogen-bonded complexes between H3SiOH and selected O- and N-acceptor molecules. Beckmann J; Grabowsky S J Phys Chem A; 2007 Mar; 111(10):2011-9. PubMed ID: 17305322 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]