These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 18922166)

  • 1. Multi-agent systems in epidemiology: a first step for computational biology in the study of vector-borne disease transmission.
    Roche B; Guégan JF; Bousquet F
    BMC Bioinformatics; 2008 Oct; 9():435. PubMed ID: 18922166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Community-level analysis of risk of vector-borne disease.
    Zavaleta JO; Rossignol PA
    Trans R Soc Trop Med Hyg; 2004 Oct; 98(10):610-8. PubMed ID: 15289098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Models for the effects of host movement in vector-borne disease systems.
    Cosner C
    Math Biosci; 2015 Dec; 270(Pt B):192-7. PubMed ID: 26160031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computationally exact methods for stochastic periodic dynamics: Spatiotemporal dispersal and temporally forced transmission.
    Ross JV
    J Theor Biol; 2010 Jan; 262(1):14-22. PubMed ID: 19766661
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling freshwater snail habitat suitability and areas of potential snail-borne disease transmission in Uganda.
    Stensgaard AS; Jørgensen A; Kabatereine NB; Rahbek C; Kristensen TK
    Geospat Health; 2006 Nov; 1(1):93-104. PubMed ID: 18686235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational systems biology in drug discovery and development: methods and applications.
    Materi W; Wishart DS
    Drug Discov Today; 2007 Apr; 12(7-8):295-303. PubMed ID: 17395089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Behind the scene, something else is pulling the strings: emphasizing parasitic manipulation in vector-borne diseases.
    Lefèvre T; Thomas F
    Infect Genet Evol; 2008 Jul; 8(4):504-19. PubMed ID: 17588825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transmission-virulence trade-offs in vector-borne diseases.
    Alizon S; van Baalen M
    Theor Popul Biol; 2008 Aug; 74(1):6-15. PubMed ID: 18508101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From population structure to genetically-engineered vectors: new ways to control vector-borne diseases?
    Sparagano OA; De Luna CJ
    Infect Genet Evol; 2008 Jul; 8(4):520-5. PubMed ID: 17560836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Impact of changes in the environment on vector-transmitted diseases].
    Mouchet J; Carnevale P
    Sante; 1997; 7(4):263-9. PubMed ID: 9410453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of species diversity on disease risk.
    Keesing F; Holt RD; Ostfeld RS
    Ecol Lett; 2006 Apr; 9(4):485-98. PubMed ID: 16623733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. UML as a cell and biochemistry modeling language.
    Webb K; White T
    Biosystems; 2005 Jun; 80(3):283-302. PubMed ID: 15888343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wildlife diseases: from individuals to ecosystems.
    Tompkins DM; Dunn AM; Smith MJ; Telfer S
    J Anim Ecol; 2011 Jan; 80(1):19-38. PubMed ID: 20735792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of host movement on viral transmission dynamics in a vector-borne disease system.
    Watts EJ; Palmer SC; Bowman AS; Irvine RJ; Smith A; Travis JM
    Parasitology; 2009 Sep; 136(10):1221-34. PubMed ID: 19631009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vector-Borne Pathogen and Host Evolution in a Structured Immuno-Epidemiological System.
    Gulbudak H; Cannataro VL; Tuncer N; Martcheva M
    Bull Math Biol; 2017 Feb; 79(2):325-355. PubMed ID: 28032207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A model for the coevolution of immunity and immune evasion in vector-borne diseases with implications for the epidemiology of malaria.
    Koella JC; Boëte C
    Am Nat; 2003 May; 161(5):698-707. PubMed ID: 12858279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Virtual globes and geospatial health: the potential of new tools in the management and control of vector-borne diseases.
    Stensgaard AS; Saarnak CF; Utzinger J; Vounatsou P; Simoonga C; Mushinge G; Rahbek C; Møhlenberg F; Kristensen TK
    Geospat Health; 2009 May; 3(2):127-41. PubMed ID: 19440958
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The use of remote sensing for the ecological description of multi-host disease systems: a case study on West Nile virus in southern France.
    Tran A; Gaidet N; L' Ambert G; Balenghien T; Balança G; Chevalier V; Soti V; Ivanes C; Etter E; Schaffner F; Baldet T; de la Rocque S
    Vet Ital; 2007; 43(3):687-97. PubMed ID: 20422548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The control of vector-borne disease epidemics.
    Hosack GR; Rossignol PA; van den Driessche P
    J Theor Biol; 2008 Nov; 255(1):16-25. PubMed ID: 18706917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SysBioMed report: advancing systems biology for medical applications.
    Wolkenhauer O; Fell D; De Meyts P; Blüthgen N; Herzel H; Le Novère N; Höfer T; Schürrle K; van Leeuwen I
    IET Syst Biol; 2009 May; 3(3):131-6. PubMed ID: 19449974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.