These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 18922172)

  • 1. Identifying intrinsic and extrinsic determinants that regulate internal initiation of translation mediated by the FMR1 5' leader.
    Dobson T; Kube E; Timmerman S; Krushel LA
    BMC Mol Biol; 2008 Oct; 9():89. PubMed ID: 18922172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Internal initiation of translation of the TrkB mRNA is mediated by multiple regions within the 5' leader.
    Dobson T; Minic A; Nielsen K; Amiott E; Krushel L
    Nucleic Acids Res; 2005; 33(9):2929-41. PubMed ID: 15908588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The 5'-untranslated region of the FMR1 message facilitates translation by internal ribosome entry.
    Chiang PW; Carpenter LE; Hagerman PJ
    J Biol Chem; 2001 Oct; 276(41):37916-21. PubMed ID: 11489899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Initiation of translation of the FMR1 mRNA Occurs predominantly through 5'-end-dependent ribosomal scanning.
    Ludwig AL; Hershey JW; Hagerman PJ
    J Mol Biol; 2011 Mar; 407(1):21-34. PubMed ID: 21237174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FMR1 CGG repeat lengths mediate different regulation of reporter gene expression in comparative transient and locus specific integration assays.
    Sølvsten C; Nielsen AL
    Gene; 2011 Oct; 486(1-2):15-22. PubMed ID: 21767618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cap-independent translation conferred by the 5' leader of tobacco etch virus is eukaryotic initiation factor 4G dependent.
    Gallie DR
    J Virol; 2001 Dec; 75(24):12141-52. PubMed ID: 11711605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The (CGG)n repeat element within the 5' untranslated region of the FMR1 message provides both positive and negative cis effects on in vivo translation of a downstream reporter.
    Chen LS; Tassone F; Sahota P; Hagerman PJ
    Hum Mol Genet; 2003 Dec; 12(23):3067-74. PubMed ID: 14519687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of RUNX2 isoforms: involvement of cap-dependent and cap-independent mechanisms of translation.
    Elango N; Li Y; Shivshankar P; Katz MS
    J Cell Biochem; 2006 Nov; 99(4):1108-21. PubMed ID: 16767703
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CGG Repeat-Associated Non-AUG Translation Utilizes a Cap-Dependent Scanning Mechanism of Initiation to Produce Toxic Proteins.
    Kearse MG; Green KM; Krans A; Rodriguez CM; Linsalata AE; Goldstrohm AC; Todd PK
    Mol Cell; 2016 Apr; 62(2):314-322. PubMed ID: 27041225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The tetraplex (CGG)n destabilizing proteins hnRNP A2 and CBF-A enhance the in vivo translation of fragile X premutation mRNA.
    Khateb S; Weisman-Shomer P; Hershco-Shani I; Ludwig AL; Fry M
    Nucleic Acids Res; 2007; 35(17):5775-88. PubMed ID: 17716999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of 5'-leader length, secondary structure and PABP concentration on cap and poly(A) tail function during translation in Xenopus oocytes.
    Gallie DR; Ling J; Niepel M; Morley SJ; Pain VM
    Nucleic Acids Res; 2000 Aug; 28(15):2943-53. PubMed ID: 10908358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient translation initiation directed by the 900-nucleotide-long and GC-rich 5' untranslated region of the human retrotransposon LINE-1 mRNA is strictly cap dependent rather than internal ribosome entry site mediated.
    Dmitriev SE; Andreev DE; Terenin IM; Olovnikov IA; Prassolov VS; Merrick WC; Shatsky IN
    Mol Cell Biol; 2007 Jul; 27(13):4685-97. PubMed ID: 17470553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. UNR translation can be driven by an IRES element that is negatively regulated by polypyrimidine tract binding protein.
    Cornelis S; Tinton SA; Schepens B; Bruynooghe Y; Beyaert R
    Nucleic Acids Res; 2005; 33(10):3095-108. PubMed ID: 15928332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural domains within the HIV-1 mRNA and the ribosomal protein S25 influence cap-independent translation initiation.
    Carvajal F; Vallejos M; Walters B; Contreras N; Hertz MI; Olivares E; Cáceres CJ; Pino K; Letelier A; Thompson SR; López-Lastra M
    FEBS J; 2016 Jul; 283(13):2508-27. PubMed ID: 27191820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. hnRNP Q Regulates Internal Ribosome Entry Site-Mediated
    Choi JH; Kim SH; Jeong YH; Kim SW; Min KT; Kim KT
    Mol Cell Biol; 2019 Feb; 39(4):. PubMed ID: 30478144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcript leader regions of two Saccharomyces cerevisiae mRNAs contain internal ribosome entry sites that function in living cells.
    Zhou W; Edelman GM; Mauro VP
    Proc Natl Acad Sci U S A; 2001 Feb; 98(4):1531-6. PubMed ID: 11171985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The leader region of Laminin B1 mRNA confers cap-independent translation.
    Petz M; Kozina D; Huber H; Siwiec T; Seipelt J; Sommergruber W; Mikulits W
    Nucleic Acids Res; 2007; 35(8):2473-82. PubMed ID: 17395640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Translational control of the sterol-regulatory transcription factor SREBP-1 mRNA in response to serum starvation or ER stress is mediated by an internal ribosome entry site.
    Damiano F; Alemanno S; Gnoni GV; Siculella L
    Biochem J; 2010 Aug; 429(3):603-12. PubMed ID: 20513236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The different pathways of HIV genomic RNA translation.
    Chamond N; Locker N; Sargueil B
    Biochem Soc Trans; 2010 Dec; 38(6):1548-52. PubMed ID: 21118124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A native function for RAN translation and CGG repeats in regulating fragile X protein synthesis.
    Rodriguez CM; Wright SE; Kearse MG; Haenfler JM; Flores BN; Liu Y; Ifrim MF; Glineburg MR; Krans A; Jafar-Nejad P; Sutton MA; Bassell GJ; Parent JM; Rigo F; Barmada SJ; Todd PK
    Nat Neurosci; 2020 Mar; 23(3):386-397. PubMed ID: 32066985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.