These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
478 related articles for article (PubMed ID: 18922573)
1. Hydrogel based on interpenetrating polymer networks of dextran and gelatin for vascular tissue engineering. Liu Y; Chan-Park MB Biomaterials; 2009 Jan; 30(2):196-207. PubMed ID: 18922573 [TBL] [Abstract][Full Text] [Related]
2. A biomimetic hydrogel based on methacrylated dextran-graft-lysine and gelatin for 3D smooth muscle cell culture. Liu Y; Chan-Park MB Biomaterials; 2010 Feb; 31(6):1158-70. PubMed ID: 19897239 [TBL] [Abstract][Full Text] [Related]
3. Novel glycidyl methacrylated dextran (Dex-GMA)/gelatin hydrogel scaffolds containing microspheres loaded with bone morphogenetic proteins: formulation and characteristics. Chen FM; Zhao YM; Sun HH; Jin T; Wang QT; Zhou W; Wu ZF; Jin Y J Control Release; 2007 Mar; 118(1):65-77. PubMed ID: 17250921 [TBL] [Abstract][Full Text] [Related]
4. Interpenetrating networks based on gelatin methacrylamide and PEG formed using concurrent thiol click chemistries for hydrogel tissue engineering scaffolds. Daniele MA; Adams AA; Naciri J; North SH; Ligler FS Biomaterials; 2014 Feb; 35(6):1845-56. PubMed ID: 24314597 [TBL] [Abstract][Full Text] [Related]
6. Dextran and gelatin based photocrosslinkable tissue adhesive. Wang T; Nie J; Yang D Carbohydr Polym; 2012 Nov; 90(4):1428-36. PubMed ID: 22944399 [TBL] [Abstract][Full Text] [Related]
7. Hierarchically designed agarose and poly(ethylene glycol) interpenetrating network hydrogels for cartilage tissue engineering. DeKosky BJ; Dormer NH; Ingavle GC; Roatch CH; Lomakin J; Detamore MS; Gehrke SH Tissue Eng Part C Methods; 2010 Dec; 16(6):1533-42. PubMed ID: 20626274 [TBL] [Abstract][Full Text] [Related]
8. Novel glycidyl methacrylated dextran/gelatin nanoparticles loaded with basic fibroblast growth factor: formulation and characteristics. Gu C; Zheng R; Yang Z; Wen A; Wu H; Zhang H; Yi D Drug Dev Ind Pharm; 2009 Dec; 35(12):1419-29. PubMed ID: 19929201 [TBL] [Abstract][Full Text] [Related]
9. Double-stimuli-responsive degradation of hydrogels consisting of oligopeptide-terminated poly(ethylene glycol) and dextran with an interpenetrating polymer network. Kurisawa M; Terano M; Yui N J Biomater Sci Polym Ed; 1997; 8(9):691-708. PubMed ID: 9257182 [TBL] [Abstract][Full Text] [Related]
11. 3D Printed Silicone-Hydrogel Scaffold with Enhanced Physicochemical Properties. Mohanty S; Alm M; Hemmingsen M; Dolatshahi-Pirouz A; Trifol J; Thomsen P; Dufva M; Wolff A; Emnéus J Biomacromolecules; 2016 Apr; 17(4):1321-9. PubMed ID: 26902925 [TBL] [Abstract][Full Text] [Related]
12. Enhanced mechanical and cell adhesive properties of photo-crosslinked PEG hydrogels by incorporation of gelatin in the networks. Liang J; Guo Z; Timmerman A; Grijpma D; Poot A Biomed Mater; 2019 Jan; 14(2):024102. PubMed ID: 30524039 [TBL] [Abstract][Full Text] [Related]
13. Macroporous interpenetrating network of polyethylene glycol (PEG) and gelatin for cartilage regeneration. Zhang J; Wang J; Zhang H; Lin J; Ge Z; Zou X Biomed Mater; 2016 Jun; 11(3):035014. PubMed ID: 27305040 [TBL] [Abstract][Full Text] [Related]
14. Poly(glycerol sebacate)-co-poly(ethylene glycol)/Gelatin Hybrid Hydrogels as Biocompatible Biomaterials for Cell Proliferation and Spreading. Chang CW; Yeh YC Macromol Biosci; 2021 Dec; 21(12):e2100248. PubMed ID: 34514730 [TBL] [Abstract][Full Text] [Related]
15. Dextran hydrogels incorporated with bioactive glass-ceramic: Nanocomposite scaffolds for bone tissue engineering. Nikpour P; Salimi-Kenari H; Fahimipour F; Rabiee SM; Imani M; Dashtimoghadam E; Tayebi L Carbohydr Polym; 2018 Jun; 190():281-294. PubMed ID: 29628249 [TBL] [Abstract][Full Text] [Related]
16. An interpenetrating network-strengthened and toughened hydrogel that supports cell-based nucleus pulposus regeneration. Gan Y; Li P; Wang L; Mo X; Song L; Xu Y; Zhao C; Ouyang B; Tu B; Luo L; Zhu L; Dong S; Li F; Zhou Q Biomaterials; 2017 Aug; 136():12-28. PubMed ID: 28505597 [TBL] [Abstract][Full Text] [Related]
17. Cell-laden interpenetrating network hydrogels formed from methacrylated gelatin and silk fibroin via a combination of sonication and photocrosslinking approaches. Xiao W; Li J; Qu X; Wang L; Tan Y; Li K; Li H; Yue X; Li B; Liao X Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():57-67. PubMed ID: 30889731 [TBL] [Abstract][Full Text] [Related]
18. In situ forming IPN hydrogels of calcium alginate and dextran-HEMA for biomedical applications. Pescosolido L; Vermonden T; Malda J; Censi R; Dhert WJ; Alhaique F; Hennink WE; Matricardi P Acta Biomater; 2011 Apr; 7(4):1627-33. PubMed ID: 21130186 [TBL] [Abstract][Full Text] [Related]
19. Engineering a morphogenetically active hydrogel for bioprinting of bioartificial tissue derived from human osteoblast-like SaOS-2 cells. Neufurth M; Wang X; Schröder HC; Feng Q; Diehl-Seifert B; Ziebart T; Steffen R; Wang S; Müller WEG Biomaterials; 2014 Oct; 35(31):8810-8819. PubMed ID: 25047630 [TBL] [Abstract][Full Text] [Related]
20. A novel gelatin-based micro-cavitary hydrogel for potential application in delivery of anchorage dependent cells: A study with vasculogenesis model. Leong W; Fan C; Wang DA Colloids Surf B Biointerfaces; 2016 Oct; 146():334-42. PubMed ID: 27371893 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]