BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 18922702)

  • 1. Rapid discrimination of archaeal tetraether lipid cores by liquid chromatography-tandem mass spectrometry.
    Knappy CS; Chong JP; Keely BJ
    J Am Soc Mass Spectrom; 2009 Jan; 20(1):51-9. PubMed ID: 18922702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural complexity in isoprenoid glycerol dialkyl glycerol tetraether lipid cores of Sulfolobus and other archaea revealed by liquid chromatography-tandem mass spectrometry.
    Knappy CS; Barillà D; de Blaquiere JP; Morgan HW; Nunn CE; Suleman M; Tan CH; Keely BJ
    Chem Phys Lipids; 2012 Sep; 165(6):648-55. PubMed ID: 22776323
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glycerol monoalkanediol diethers: a novel series of archaeal lipids detected in hydrothermal environments.
    Bauersachs T; Schwark L
    Rapid Commun Mass Spectrom; 2016 Jan; 30(1):54-60. PubMed ID: 26661970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of intact tetraether lipids in archaeal cell material and sediments by high performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry.
    Hopmans EC; Schouten S; Pancost RD; van der Meer MT; Sinninghe Damsté JS
    Rapid Commun Mass Spectrom; 2000; 14(7):585-9. PubMed ID: 10775092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile distinction of neutral and acidic tetraether lipids in archaea membrane by halogen atom adduct ions in electrospray ionization mass spectrometry.
    Murae T; Takamatsu Y; Muraoka R; Endoh S; Yamauchi N
    J Mass Spectrom; 2002 Feb; 37(2):209-15. PubMed ID: 11857765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel glycerol dialkanol triols in sediments: transformation products of glycerol dibiphytanyl glycerol tetraether lipids or biosynthetic intermediates?
    Knappy CS; Keely BJ
    Chem Commun (Camb); 2012 Jan; 48(6):841-3. PubMed ID: 22117226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extending the known range of glycerol ether lipids in the environment: structural assignments based on tandem mass spectral fragmentation patterns.
    Liu XL; Summons RE; Hinrichs KU
    Rapid Commun Mass Spectrom; 2012 Oct; 26(19):2295-302. PubMed ID: 22956321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crenarchaeol: the characteristic core glycerol dibiphytanyl glycerol tetraether membrane lipid of cosmopolitan pelagic crenarchaeota.
    Damsté JS; Schouten S; Hopmans EC; van Duin AC; Geenevasen JA
    J Lipid Res; 2002 Oct; 43(10):1641-51. PubMed ID: 12364548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification and significance of unsaturated archaeal tetraether lipids in marine sediments.
    Zhu C; Yoshinaga MY; Peters CA; Liu XL; Elvert M; Hinrichs KU
    Rapid Commun Mass Spectrom; 2014 May; 28(10):1144-52. PubMed ID: 24711277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane lipids of mesophilic anaerobic bacteria thriving in peats have typical archaeal traits.
    Weijers JW; Schouten S; Hopmans EC; Geenevasen JA; David OR; Coleman JM; Pancost RD; Sinninghe Damsté JS
    Environ Microbiol; 2006 Apr; 8(4):648-57. PubMed ID: 16584476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mono-, di- and trimethylated homologues of isoprenoid tetraether lipid cores in archaea and environmental samples: mass spectrometric identification and significance.
    Knappy C; Barillà D; Chong J; Hodgson D; Morgan H; Suleman M; Tan C; Yao P; Keely B
    J Mass Spectrom; 2015 Dec; 50(12):1420-32. PubMed ID: 26634977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Asymmetrical topology of diether- and tetraether-type polar lipids in membranes of Methanobacterium thermoautotrophicum cells.
    Morii H; Koga Y
    J Biol Chem; 1994 Apr; 269(14):10492-7. PubMed ID: 8144633
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The major lipid cores of the archaeon Ignisphaera aggregans: implications for the phylogeny and biosynthesis of glycerol monoalkyl glycerol tetraether isoprenoid lipids.
    Knappy CS; Nunn CE; Morgan HW; Keely BJ
    Extremophiles; 2011 Jul; 15(4):517-28. PubMed ID: 21630026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discovery, structure and mechanism of a tetraether lipid synthase.
    Lloyd CT; Iwig DF; Wang B; Cossu M; Metcalf WW; Boal AK; Booker SJ
    Nature; 2022 Sep; 609(7925):197-203. PubMed ID: 35882349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Widespread occurrence of structurally diverse tetraether membrane lipids: evidence for the ubiquitous presence of low-temperature relatives of hyperthermophiles.
    Schouten S; Hopmans EC; Pancost RD; Damste JS
    Proc Natl Acad Sci U S A; 2000 Dec; 97(26):14421-6. PubMed ID: 11121044
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comprehensive chemical profiling of Pinellia species tuber and processed Pinellia tuber by gas chromatography-mass spectrometry and liquid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry.
    Lee JY; Park NH; Lee W; Kim EH; Jin YH; Seo EK; Hong J
    J Chromatogr A; 2016 Nov; 1471():164-177. PubMed ID: 27769531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of growth temperature on ether lipid biochemistry in Archaeoglobus fulgidus.
    Lai D; Springstead JR; Monbouquette HG
    Extremophiles; 2008 Mar; 12(2):271-8. PubMed ID: 18157503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Core and intact polar glycerol dibiphytanyl glycerol tetraether lipids of ammonia-oxidizing archaea enriched from marine and estuarine sediments.
    Pitcher A; Hopmans EC; Mosier AC; Park SJ; Rhee SK; Francis CA; Schouten S; Damsté JS
    Appl Environ Microbiol; 2011 May; 77(10):3468-77. PubMed ID: 21441324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structures of archaebacterial membrane lipids.
    Sprott GD
    J Bioenerg Biomembr; 1992 Dec; 24(6):555-66. PubMed ID: 1459987
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of growth temperature and growth phase on the lipid composition of the archaeal membrane from Thermococcus kodakaraensis.
    Matsuno Y; Sugai A; Higashibata H; Fukuda W; Ueda K; Uda I; Sato I; Itoh T; Imanaka T; Fujiwara S
    Biosci Biotechnol Biochem; 2009 Jan; 73(1):104-8. PubMed ID: 19129645
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.