BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 18923102)

  • 1. Molecular dynamics simulation study of a pulmonary surfactant film interacting with a carbonaceous nanoparticle.
    Choe S; Chang R; Jeon J; Violi A
    Biophys J; 2008 Nov; 95(9):4102-14. PubMed ID: 18923102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. C₆₀ fullerene promotes lung monolayer collapse.
    Barnoud J; Urbini L; Monticelli L
    J R Soc Interface; 2015 Mar; 12(104):20140931. PubMed ID: 25589571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physicochemical properties of nanoparticles regulate translocation across pulmonary surfactant monolayer and formation of lipoprotein corona.
    Hu G; Jiao B; Shi X; Valle RP; Fan Q; Zuo YY
    ACS Nano; 2013 Dec; 7(12):10525-33. PubMed ID: 24266809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-resolution investigation of nanoparticle interaction with a model pulmonary surfactant monolayer.
    Sachan AK; Harishchandra RK; Bantz C; Maskos M; Reichelt R; Galla HJ
    ACS Nano; 2012 Feb; 6(2):1677-87. PubMed ID: 22288983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biophysical inhibition of synthetic vs. naturally-derived pulmonary surfactant preparations by polymeric nanoparticles.
    Beck-Broichsitter M; Ruppert C; Schmehl T; Günther A; Seeger W
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):474-81. PubMed ID: 24184425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Simulation Study on the Interaction Between Pollutant Nanoparticles and the Pulmonary Surfactant Monolayer.
    Yue K; Sun X; Tang J; Wei Y; Zhang X
    Int J Mol Sci; 2019 Jul; 20(13):. PubMed ID: 31277358
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Size dependent interactions of nanoparticles with lung surfactant model systems and the significant impact on surface potential.
    Ku T; Gill S; Löbenberg R; Azarmi S; Roa W; Prenner EJ
    J Nanosci Nanotechnol; 2008 Jun; 8(6):2971-8. PubMed ID: 18681033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of multilayers in preventing the premature buckling of the pulmonary surfactant.
    Al-Saiedy M; Tarokh A; Nelson S; Hossini K; Green F; Ling CC; Prenner EJ; Amrein M
    Biochim Biophys Acta Biomembr; 2017 Aug; 1859(8):1372-1380. PubMed ID: 28501605
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding the mutual impact of interaction between hydrophobic nanoparticles and pulmonary surfactant monolayer.
    Sachan AK; Galla HJ
    Small; 2014 Mar; 10(6):1069-75. PubMed ID: 24339125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoparticle translocation across the lung surfactant film regulated by grafting polymers.
    Bai X; Li M; Hu G
    Nanoscale; 2020 Feb; 12(6):3931-3940. PubMed ID: 32003385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrical surface potential of pulmonary surfactant.
    Leonenko Z; Rodenstein M; Döhner J; Eng LM; Amrein M
    Langmuir; 2006 Nov; 22(24):10135-9. PubMed ID: 17107011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of Tanaka lipid mixture with natural surfactant Alveofact to study nanoparticle interactions on Langmuir film balance.
    Schüer JJ; Wölk C; Bakowsky U; Pinnapireddy SR
    Colloids Surf B Biointerfaces; 2020 Apr; 188():110750. PubMed ID: 31884081
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monolayer-multilayer transitions in a lung surfactant model: IR reflection-absorption spectroscopy and atomic force microscopy.
    Wang L; Cai P; Galla HJ; He H; Flach CR; Mendelsohn R
    Eur Biophys J; 2005 May; 34(3):243-54. PubMed ID: 15645307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biophysicochemical Interaction of a Clinical Pulmonary Surfactant with Nanoalumina.
    Mousseau F; Le Borgne R; Seyrek E; Berret JF
    Langmuir; 2015 Jul; 31(26):7346-54. PubMed ID: 26075579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of cholesterol on the physical properties of pulmonary surfactant films: atomic force measurements study.
    Leonenko Z; Finot E; Vassiliev V; Amrein M
    Ultramicroscopy; 2006; 106(8-9):687-94. PubMed ID: 16675117
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computer simulations of lung surfactant.
    Baoukina S; Tieleman DP
    Biochim Biophys Acta; 2016 Oct; 1858(10):2431-2440. PubMed ID: 26922885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of levofloxacin with lung surfactant at the air-water interface.
    Ortiz-Collazos S; Estrada-López ED; Pedreira AA; Picciani PHS; Oliveira ON; Pimentel AS
    Colloids Surf B Biointerfaces; 2017 Oct; 158():689-696. PubMed ID: 28778052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular mobility in the monolayers of foam films stabilized by porcine lung surfactant.
    Lalchev ZI; Todorov RK; Christova YT; Wilde PJ; Mackie AR; Clark DC
    Biophys J; 1996 Nov; 71(5):2591-601. PubMed ID: 8913597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamic and structural characterization of a mixed perfluorocarbon-phospholipid ternary monolayer surfactant system.
    Eftaiha AF; Brunet SM; Paige MF
    J Colloid Interface Sci; 2012 Feb; 368(1):356-65. PubMed ID: 22047922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lung surfactant dysfunction in tuberculosis: effect of mycobacterial tubercular lipids on dipalmitoylphosphatidylcholine surface activity.
    Chimote G; Banerjee R
    Colloids Surf B Biointerfaces; 2005 Nov; 45(3-4):215-23. PubMed ID: 16198543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.