These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 18923102)

  • 21. Effect of cholesterol on electrostatics in lipid-protein films of a pulmonary surfactant.
    Finot E; Leonenko Y; Moores B; Eng L; Amrein M; Leonenko Z
    Langmuir; 2010 Feb; 26(3):1929-35. PubMed ID: 20050607
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Conformation and molecular topography of the N-terminal segment of surfactant protein B in structure-promoting environments.
    Gordon LM; Horvath S; Longo ML; Zasadzinski JA; Taeusch HW; Faull K; Leung C; Waring AJ
    Protein Sci; 1996 Aug; 5(8):1662-75. PubMed ID: 8844855
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structure and orientation of lung surfactant SP-C and L-alpha-dipalmitoylphosphatidylcholine in aqueous monolayers.
    Gericke A; Flach CR; Mendelsohn R
    Biophys J; 1997 Jul; 73(1):492-9. PubMed ID: 9199811
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pulmonary surfactant protein SP-C causes packing rearrangements of dipalmitoylphosphatidylcholine in spread monolayers.
    Pérez-Gil J; Nag K; Taneva S; Keough KM
    Biophys J; 1992 Jul; 63(1):197-204. PubMed ID: 1420867
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Distribution of the surfactant-associated protein C within a lung surfactant model film investigated by near-field optical microscopy.
    Kramer A; Wintergalen A; Sieber M; Galla HJ; Amrein M; Guckenberger R
    Biophys J; 2000 Jan; 78(1):458-65. PubMed ID: 10620309
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of the in situ structural and interfacial properties of the cationic hydrophobic heteropolypeptide, KL4, in lung surfactant bilayer and monolayer models at the air-water interface: implications for pulmonary surfactant delivery.
    Mansour HM; Damodaran S; Zografi G
    Mol Pharm; 2008; 5(5):681-95. PubMed ID: 18630875
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of SP-C on surface potential distribution in pulmonary surfactant: Atomic force microscopy and Kelvin probe force microscopy study.
    Hane F; Moores B; Amrein M; Leonenko Z
    Ultramicroscopy; 2009 Jul; 109(8):968-73. PubMed ID: 19398273
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of Nanoparticles on the Bulk Shear Viscosity of a Lung Surfactant Fluid.
    Thai LP; Mousseau F; Oikonomou E; Radiom M; Berret JF
    ACS Nano; 2020 Jan; 14(1):466-475. PubMed ID: 31854968
    [TBL] [Abstract][Full Text] [Related]  

  • 29. New insights into lung surfactant monolayers using vibrational sum frequency generation spectroscopy.
    Ma G; Allen HC
    Photochem Photobiol; 2006; 82(6):1517-29. PubMed ID: 16930094
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Scanning force microscopy at the air-water interface of an air bubble coated with pulmonary surfactant.
    Knebel D; Sieber M; Reichelt R; Galla HJ; Amrein M
    Biophys J; 2002 Jan; 82(1 Pt 1):474-80. PubMed ID: 11751334
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An elevated level of cholesterol impairs self-assembly of pulmonary surfactant into a functional film.
    Leonenko Z; Gill S; Baoukina S; Monticelli L; Doehner J; Gunasekara L; Felderer F; Rodenstein M; Eng LM; Amrein M
    Biophys J; 2007 Jul; 93(2):674-83. PubMed ID: 17483162
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Methyl-beta-cyclodextrin restores the structure and function of pulmonary surfactant films impaired by cholesterol.
    Gunasekara LC; Pratt RM; Schoel WM; Gosche S; Prenner EJ; Amrein MW
    Biochim Biophys Acta; 2010 May; 1798(5):986-94. PubMed ID: 20018170
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular dynamics simulations of lung surfactant lipid monolayers.
    Rose D; Rendell J; Lee D; Nag K; Booth V
    Biophys Chem; 2008 Dec; 138(3):67-77. PubMed ID: 18845376
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phase transitions in films of lung surfactant at the air-water interface.
    Nag K; Perez-Gil J; Ruano ML; Worthman LA; Stewart J; Casals C; Keough KM
    Biophys J; 1998 Jun; 74(6):2983-95. PubMed ID: 9635752
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metal nanoparticle pollutants interfere with pulmonary surfactant function in vitro.
    Bakshi MS; Zhao L; Smith R; Possmayer F; Petersen NO
    Biophys J; 2008 Feb; 94(3):855-68. PubMed ID: 17890383
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hydrophobic surfactant proteins and their analogues.
    Walther FJ; Waring AJ; Sherman MA; Zasadzinski JA; Gordon LM
    Neonatology; 2007; 91(4):303-10. PubMed ID: 17575474
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Penetration of antimicrobial peptides in a lung surfactant model.
    Souza LMP; Nascimento JB; Romeu AL; Estrada-López ED; Pimentel AS
    Colloids Surf B Biointerfaces; 2018 Jul; 167():345-353. PubMed ID: 29689490
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Infrared spectroscopic investigations of pulmonary surfactant. Surface film transitions at the air-water interface and bulk phase thermotropism.
    Dluhy RA; Reilly KE; Hunt RD; Mitchell ML; Mautone AJ; Mendelsohn R
    Biophys J; 1989 Dec; 56(6):1173-81. PubMed ID: 2611331
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of hydrophobic alkylated gold nanoparticles on the phase behavior of monolayers of DPPC and clinical lung surfactant.
    Tatur S; Badia A
    Langmuir; 2012 Jan; 28(1):628-39. PubMed ID: 22118426
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biophysical influence of airborne carbon nanomaterials on natural pulmonary surfactant.
    Valle RP; Wu T; Zuo YY
    ACS Nano; 2015 May; 9(5):5413-21. PubMed ID: 25929264
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.