These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 18923102)

  • 41. Location of structural transitions in an isotopically labeled lung surfactant SP-B peptide by IRRAS.
    Flach CR; Cai P; Dieudonné D; Brauner JW; Keough KM; Stewart J; Mendelsohn R
    Biophys J; 2003 Jul; 85(1):340-9. PubMed ID: 12829488
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Insights into the effect of combustion-generated carbon nanoparticles on biological membranes: a computer simulation study.
    Chang R; Violi A
    J Phys Chem B; 2006 Mar; 110(10):5073-83. PubMed ID: 16526750
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Lipid extraction mediates aggregation of carbon nanospheres in pulmonary surfactant monolayers.
    Yue T; Xu Y; Li S; Zhang X; Huang F
    Phys Chem Chem Phys; 2016 Jul; 18(28):18923-33. PubMed ID: 27353041
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Langmuir monolayer of artificial pulmonary surfactant mixtures with an amphiphilic peptide at the air/water interface: comparison of new preparations with surfacten (Surfactant TA).
    Nakahara H; Lee S; Sugihara G; Chang CH; Shibata O
    Langmuir; 2008 Apr; 24(7):3370-9. PubMed ID: 18315015
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of cholesterol and amyloid-β peptide on structure and function of mixed-lipid films and pulmonary surfactant BLES: an atomic force microscopy study.
    Hane F; Drolle E; Leonenko Z
    Nanomedicine; 2010 Dec; 6(6):808-14. PubMed ID: 20493966
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Real-time investigation of lung surfactant respreading with surface vibrational spectroscopy.
    Ma G; Allen HC
    Langmuir; 2006 Dec; 22(26):11267-74. PubMed ID: 17154614
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Liquid-crystalline collapse of pulmonary surfactant monolayers.
    Schief WR; Antia M; Discher BM; Hall SB; Vogel V
    Biophys J; 2003 Jun; 84(6):3792-806. PubMed ID: 12770885
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Modifying calf lung surfactant by hexadecanol.
    Alonso C; Bringezu F; Brezesinski G; Waring AJ; Zasadzinski JA
    Langmuir; 2005 Feb; 21(3):1028-35. PubMed ID: 15667185
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Interfacial properties of pulmonary surfactant layers.
    Wüstneck R; Perez-Gil J; Wüstneck N; Cruz A; Fainerman VB; Pison U
    Adv Colloid Interface Sci; 2005 Dec; 117(1-3):33-58. PubMed ID: 16120435
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Atomic force microscopy analysis of rat pulmonary surfactant films.
    Jiao X; Keating E; Tadayyon S; Possmayer F; Zuo YY; Veldhuizen RA
    Biophys Chem; 2011 Oct; 158(2-3):119-25. PubMed ID: 21704443
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Transport of nanoparticles across pulmonary surfactant monolayer: a molecular dynamics study.
    Xu Y; Deng L; Ren H; Zhang X; Huang F; Yue T
    Phys Chem Chem Phys; 2017 Jul; 19(27):17568-17576. PubMed ID: 28621369
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Structural characterization of the monolayer-multilayer transition in a pulmonary surfactant model: IR studies of films transferred at continuously varying surface pressures.
    Mao G; Desai J; Flach CR; Mendelsohn R
    Langmuir; 2008 Mar; 24(5):2025-34. PubMed ID: 18198907
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Proteomic and Lipidomic Analysis of Nanoparticle Corona upon Contact with Lung Surfactant Reveals Differences in Protein, but Not Lipid Composition.
    Raesch SS; Tenzer S; Storck W; Rurainski A; Selzer D; Ruge CA; Perez-Gil J; Schaefer UF; Lehr CM
    ACS Nano; 2015 Dec; 9(12):11872-85. PubMed ID: 26575243
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The electrical surface potential of pulmonary surfactant.
    Leonenko Z; Amrein M
    Front Biosci (Landmark Ed); 2009 Jan; 14(11):4337-47. PubMed ID: 19273353
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Interaction of soot derived multi-carbon nanoparticles with lung surfactants and their possible internalization inside alveolar cavity.
    Kumar P; Bohidar HB
    Indian J Exp Biol; 2010 Oct; 48(10):1037-42. PubMed ID: 21299046
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of hydrophobic surfactant peptides SP-B and SP-C on binary phospholipid monolayers. I. Fluorescence and dark-field microscopy.
    Krüger P; Schalke M; Wang Z; Notter RH; Dluhy RA; Lösche M
    Biophys J; 1999 Aug; 77(2):903-14. PubMed ID: 10423435
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Restoration of the interfacial properties of lung surfactant with a newly designed hydrocarbon/fluorocarbon lipid.
    Dilli G; Unsal H; Uslu B; Aydogan N
    Colloids Surf B Biointerfaces; 2014 Oct; 122():566-575. PubMed ID: 25112907
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cholesterol modifies the properties of surface films of dipalmitoylphosphatidylcholine plus pulmonary surfactant-associated protein B or C spread or adsorbed at the air-water interface.
    Taneva S; Keough KM
    Biochemistry; 1997 Jan; 36(4):912-22. PubMed ID: 9020791
    [TBL] [Abstract][Full Text] [Related]  

  • 59. External reflection absorption infrared spectroscopy study of lung surfactant proteins SP-B and SP-C in phospholipid monolayers at the air/water interface.
    Pastrana-Rios B; Taneva S; Keough KM; Mautone AJ; Mendelsohn R
    Biophys J; 1995 Dec; 69(6):2531-40. PubMed ID: 8599660
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Surfactant protein B and C analogues.
    Walther FJ; Gordon LM; Zasadzinski JA; Sherman MA; Waring AJ
    Mol Genet Metab; 2000; 71(1-2):342-51. PubMed ID: 11001826
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.