These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 18923102)

  • 61. Surfactant protein B and C analogues.
    Walther FJ; Gordon LM; Zasadzinski JA; Sherman MA; Waring AJ
    Mol Genet Metab; 2000; 71(1-2):342-51. PubMed ID: 11001826
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Computational Studies of Lipid-Wrapped Gold Nanoparticle Transport Through Model Lung Surfactant Monolayers.
    Hossain SI; Gandhi NS; Hughes ZE; Saha SC
    J Phys Chem B; 2021 Feb; 125(5):1392-1401. PubMed ID: 33529013
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Compositional and structural characterization of monolayers and bilayers composed of native pulmonary surfactant from wild type mice.
    Bernardino de la Serna J; Hansen S; Berzina Z; Simonsen AC; Hannibal-Bach HK; Knudsen J; Ejsing CS; Bagatolli LA
    Biochim Biophys Acta; 2013 Nov; 1828(11):2450-9. PubMed ID: 23867774
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Interactions of benzo[a]pyrene and diesel exhaust particulate matter with the lung surfactant system.
    Sosnowski TR; Koliński M; Gradón L
    Ann Occup Hyg; 2011 Apr; 55(3):329-38. PubMed ID: 21402870
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A molecular dynamics study of CaCO3 nanoparticles in a hydrophobic solvent with a stearate co-surfactant.
    Bodnarchuk MS; Heyes DM; Breakspear A; Chahine S; Dini D
    Phys Chem Chem Phys; 2015 May; 17(20):13575-81. PubMed ID: 25939689
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Effects of nanoparticles on the mechanical functioning of the lung.
    Arick DQ; Choi YH; Kim HC; Won YY
    Adv Colloid Interface Sci; 2015 Nov; 225():218-28. PubMed ID: 26494653
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Surface pressure induced structural transitions of an amphiphilic peptide in pulmonary surfactant systems by an in situ PM-IRRAS study.
    Nakahara H; Lee S; Shibata O
    Biochim Biophys Acta; 2013 Apr; 1828(4):1205-13. PubMed ID: 23321281
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Small-angle neutron scattering study of structure and interaction of nanoparticle, protein, and surfactant complexes.
    Mehan S; Chinchalikar AJ; Kumar S; Aswal VK; Schweins R
    Langmuir; 2013 Sep; 29(36):11290-9. PubMed ID: 23968136
    [TBL] [Abstract][Full Text] [Related]  

  • 69. 2D dynamical arrest transition in a mixed nanoparticle-phospholipid layer studied in real and momentum spaces.
    Orsi D; Guzmán E; Liggieri L; Ravera F; Ruta B; Chushkin Y; Rimoldi T; Cristofolini L
    Sci Rep; 2015 Dec; 5():17930. PubMed ID: 26658474
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Pulmonary surfactant protein A interacts with gel-like regions in monolayers of pulmonary surfactant lipid extract.
    Worthman LA; Nag K; Rich N; Ruano ML; Casals C; Pérez-Gil J; Keough KM
    Biophys J; 2000 Nov; 79(5):2657-66. PubMed ID: 11053138
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Molecular dynamics simulations of a pulmonary surfactant protein B peptide in a lipid monolayer.
    Freites JA; Choi Y; Tobias DJ
    Biophys J; 2003 Apr; 84(4):2169-80. PubMed ID: 12668426
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Molecular dynamics simulation of phase transitions in model lung surfactant monolayers.
    Duncan SL; Dalal IS; Larson RG
    Biochim Biophys Acta; 2011 Oct; 1808(10):2450-65. PubMed ID: 21767528
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Multilayers at the surface of solutions of exogenous lung surfactant: direct observation by neutron reflection.
    Follows D; Tiberg F; Thomas RK; Larsson M
    Biochim Biophys Acta; 2007 Feb; 1768(2):228-35. PubMed ID: 17156743
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Effects of graphene oxide nanosheets on the ultrastructure and biophysical properties of the pulmonary surfactant film.
    Hu Q; Jiao B; Shi X; Valle RP; Zuo YY; Hu G
    Nanoscale; 2015 Nov; 7(43):18025-9. PubMed ID: 26482703
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Biophysical analysis of gelatin and PLGA nanoparticle interactions with complex biomimetic lung surfactant models.
    Daear W; Sule K; Lai P; Prenner EJ
    RSC Adv; 2022 Sep; 12(43):27918-27932. PubMed ID: 36320247
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Are Plant-Based Carbohydrate Nanoparticles Safe for Inhalation? Investigating Their Interactions with the Pulmonary Surfactant Using Langmuir Monolayers.
    Gravel-Tatta L; DeWolf C; Badia A
    Langmuir; 2021 Oct; 37(42):12365-12376. PubMed ID: 34644076
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Analyzing the Role of Surfactants in the Colloidal Stability of Nanoparticles in Oil through Coarse-Grained Molecular Dynamics Simulations.
    Griffiths MZ; Shinoda W
    J Phys Chem B; 2021 Jun; 125(23):6315-6321. PubMed ID: 33990135
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Computer simulation studies of Newton black films.
    Bresme F; Faraudo J
    Langmuir; 2004 Jun; 20(12):5127-37. PubMed ID: 15984279
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Aggregation State of Metal-Based Nanomaterials at the Pulmonary Surfactant Film Determines Biophysical Inhibition.
    Yang Y; Xu L; Dekkers S; Zhang LG; Cassee FR; Zuo YY
    Environ Sci Technol; 2018 Aug; 52(15):8920-8929. PubMed ID: 30011188
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Shape affects the interactions of nanoparticles with pulmonary surfactant.
    Lin X; Zuo YY; Gu N
    Sci China Mater; 2015 Jan; 58(1):28-37. PubMed ID: 28748123
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.