These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 18923313)
1. A repeatable ex vivo model of spondylolysis and spondylolisthesis. Beadon K; Johnston JD; Siggers K; Itshayek E; Cripton PA Spine (Phila Pa 1976); 2008 Oct; 33(22):2387-93. PubMed ID: 18923313 [TBL] [Abstract][Full Text] [Related]
2. The pathomechanism of spondylolytic spondylolisthesis in immature primate lumbar spines in vitro and finite element assessments. Konz RJ; Goel VK; Grobler LJ; Grosland NM; Spratt KF; Scifert JL; Sairyo K Spine (Phila Pa 1976); 2001 Feb; 26(4):E38-49. PubMed ID: 11224899 [TBL] [Abstract][Full Text] [Related]
3. The biomechanical effects of spondylolysis and its treatment. Mihara H; Onari K; Cheng BC; David SM; Zdeblick TA Spine (Phila Pa 1976); 2003 Feb; 28(3):235-8. PubMed ID: 12567023 [TBL] [Abstract][Full Text] [Related]
4. Effects of slip severity and loading directions on the stability of isthmic spondylolisthesis: a finite element model study. Natarajan RN; Garretson RB; Biyani A; Lim TH; Andersson GB; An HS Spine (Phila Pa 1976); 2003 Jun; 28(11):1103-12. PubMed ID: 12782976 [TBL] [Abstract][Full Text] [Related]
5. [Biomechanics in the pathogenesis of spondylosis and spondylolisthesis]. Klemencsics ZL; Kiss RM Orv Hetil; 2001 Feb; 142(5):227-33. PubMed ID: 11243010 [TBL] [Abstract][Full Text] [Related]
6. Load transfer characteristics between posterior spinal implants and the lumbar spine under anterior shear loading: an in vitro investigation. Melnyk AD; Wen TL; Kingwell S; Chak JD; Singh V; Cripton PA; Fisher CG; Dvorak MF; Oxland TR Spine (Phila Pa 1976); 2012 Aug; 37(18):E1126-33. PubMed ID: 22565384 [TBL] [Abstract][Full Text] [Related]
7. An in vitro model of degenerative lumbar spondylolisthesis. Melnyk AD; Kingwell SP; Zhu Q; Chak JD; Cripton PA; Fisher CG; Dvorak MF; Oxland TR Spine (Phila Pa 1976); 2013 Jun; 38(14):E870-7. PubMed ID: 23558441 [TBL] [Abstract][Full Text] [Related]
8. Finite element analysis of the spondylolysis in lumbar spine. Wang JP; Zhong ZC; Cheng CK; Chen CS; Yu CH; Chang TK; Wei SH Biomed Mater Eng; 2006; 16(5):301-8. PubMed ID: 17075165 [TBL] [Abstract][Full Text] [Related]
9. An experimental model of adult-onset slip progression in isthmic spondylolistesis. Patwardhan A; Ghanayem A; Simonds J; Hodges S; Voronov L; Paxinos O; Havey R Stud Health Technol Inform; 2002; 91():322-4. PubMed ID: 15457748 [TBL] [Abstract][Full Text] [Related]
10. A review of the pathomechanism of forward slippage in pediatric spondylolysis: the Tokushima theory of growth plate slippage. Sairyo K; Nagamachi A; Matsuura T; Higashino K; Sakai T; Suzue N; Hamada D; Takata Y; Goto T; Nishisho T; Goda Y; Tsutsui T; Tonogai I; Miyagi R; Abe M; Morimoto M; Mineta K; Kimura T; Nitta A; Higuchi T; Hama S; Jha SC; Takahashi R; Fukuta S J Med Invest; 2015; 62(1-2):11-8. PubMed ID: 25817277 [TBL] [Abstract][Full Text] [Related]
11. Normal and spondylolytic pediatric spine movements with reference to instantaneous axis of rotation. Sakamaki T; Katoh S; Sairyo K Spine (Phila Pa 1976); 2002 Jan; 27(2):141-5. PubMed ID: 11805658 [TBL] [Abstract][Full Text] [Related]
12. Global spinal motion in subjects with lumbar spondylolysis and spondylolisthesis: does the grade or type of slip affect global spinal motion? McGregor AH; Cattermole HR; Hughes SP Spine (Phila Pa 1976); 2001 Feb; 26(3):282-6. PubMed ID: 11224864 [TBL] [Abstract][Full Text] [Related]
13. Geometry of the vertebral bodies and the intervertebral discs in lumbar segments adjacent to spondylolysis and spondylolisthesis: pilot study. Been E; Li L; Hunter DJ; Kalichman L Eur Spine J; 2011 Jul; 20(7):1159-65. PubMed ID: 21181481 [TBL] [Abstract][Full Text] [Related]
14. [The significance of mechanical factors in the development of spondylolysis. Experimental studies (author's transl)]. Schmitt E; Jilke HJ Z Orthop Ihre Grenzgeb; 1982; 120(3):354-7. PubMed ID: 7113378 [TBL] [Abstract][Full Text] [Related]
15. Interpedicular kinematics in an in vitro biomechanical assessment of a bilateral lumbar spondylolytic defect. Chamoli U; Chen AS; Diwan AD Clin Biomech (Bristol, Avon); 2014 Dec; 29(10):1108-15. PubMed ID: 25454471 [TBL] [Abstract][Full Text] [Related]
16. Facet joint arthrography in lumbar spondylolysis: anatomic basis for spread of contrast medium. McCormick CC; Taylor JR; Twomey LT Radiology; 1989 Apr; 171(1):193-6. PubMed ID: 2928525 [TBL] [Abstract][Full Text] [Related]
17. Spondylolysis and spondylolisthesis in children. Hensinger RN Instr Course Lect; 1983; 32():132-51. PubMed ID: 6546062 [TBL] [Abstract][Full Text] [Related]
18. High Sacral Endplate Inclination Vector Forces Are Associated with Pars Fracture-Mediated Lumbosacral Spondylolisthesis. Koffie RM; Yanamadala V; Coumans JV World Neurosurg; 2019 Feb; 122():e790-e794. PubMed ID: 30391597 [TBL] [Abstract][Full Text] [Related]
19. The pathophysiology of degenerative disease of the lumbar spine. Yong-Hing K; Kirkaldy-Willis WH Orthop Clin North Am; 1983 Jul; 14(3):491-504. PubMed ID: 6346204 [TBL] [Abstract][Full Text] [Related]
20. Towards establishing an occupational threshold for cumulative shear force in the vertebral joint - an in vitro evaluation of a risk factor for spondylolytic fractures using porcine specimens. Howarth SJ; Callaghan JP Clin Biomech (Bristol, Avon); 2013 Mar; 28(3):246-54. PubMed ID: 23360894 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]