BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 18923313)

  • 1. A repeatable ex vivo model of spondylolysis and spondylolisthesis.
    Beadon K; Johnston JD; Siggers K; Itshayek E; Cripton PA
    Spine (Phila Pa 1976); 2008 Oct; 33(22):2387-93. PubMed ID: 18923313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The pathomechanism of spondylolytic spondylolisthesis in immature primate lumbar spines in vitro and finite element assessments.
    Konz RJ; Goel VK; Grobler LJ; Grosland NM; Spratt KF; Scifert JL; Sairyo K
    Spine (Phila Pa 1976); 2001 Feb; 26(4):E38-49. PubMed ID: 11224899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The biomechanical effects of spondylolysis and its treatment.
    Mihara H; Onari K; Cheng BC; David SM; Zdeblick TA
    Spine (Phila Pa 1976); 2003 Feb; 28(3):235-8. PubMed ID: 12567023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of slip severity and loading directions on the stability of isthmic spondylolisthesis: a finite element model study.
    Natarajan RN; Garretson RB; Biyani A; Lim TH; Andersson GB; An HS
    Spine (Phila Pa 1976); 2003 Jun; 28(11):1103-12. PubMed ID: 12782976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Biomechanics in the pathogenesis of spondylosis and spondylolisthesis].
    Klemencsics ZL; Kiss RM
    Orv Hetil; 2001 Feb; 142(5):227-33. PubMed ID: 11243010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Load transfer characteristics between posterior spinal implants and the lumbar spine under anterior shear loading: an in vitro investigation.
    Melnyk AD; Wen TL; Kingwell S; Chak JD; Singh V; Cripton PA; Fisher CG; Dvorak MF; Oxland TR
    Spine (Phila Pa 1976); 2012 Aug; 37(18):E1126-33. PubMed ID: 22565384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An in vitro model of degenerative lumbar spondylolisthesis.
    Melnyk AD; Kingwell SP; Zhu Q; Chak JD; Cripton PA; Fisher CG; Dvorak MF; Oxland TR
    Spine (Phila Pa 1976); 2013 Jun; 38(14):E870-7. PubMed ID: 23558441
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Finite element analysis of the spondylolysis in lumbar spine.
    Wang JP; Zhong ZC; Cheng CK; Chen CS; Yu CH; Chang TK; Wei SH
    Biomed Mater Eng; 2006; 16(5):301-8. PubMed ID: 17075165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An experimental model of adult-onset slip progression in isthmic spondylolistesis.
    Patwardhan A; Ghanayem A; Simonds J; Hodges S; Voronov L; Paxinos O; Havey R
    Stud Health Technol Inform; 2002; 91():322-4. PubMed ID: 15457748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A review of the pathomechanism of forward slippage in pediatric spondylolysis: the Tokushima theory of growth plate slippage.
    Sairyo K; Nagamachi A; Matsuura T; Higashino K; Sakai T; Suzue N; Hamada D; Takata Y; Goto T; Nishisho T; Goda Y; Tsutsui T; Tonogai I; Miyagi R; Abe M; Morimoto M; Mineta K; Kimura T; Nitta A; Higuchi T; Hama S; Jha SC; Takahashi R; Fukuta S
    J Med Invest; 2015; 62(1-2):11-8. PubMed ID: 25817277
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Normal and spondylolytic pediatric spine movements with reference to instantaneous axis of rotation.
    Sakamaki T; Katoh S; Sairyo K
    Spine (Phila Pa 1976); 2002 Jan; 27(2):141-5. PubMed ID: 11805658
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Global spinal motion in subjects with lumbar spondylolysis and spondylolisthesis: does the grade or type of slip affect global spinal motion?
    McGregor AH; Cattermole HR; Hughes SP
    Spine (Phila Pa 1976); 2001 Feb; 26(3):282-6. PubMed ID: 11224864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Geometry of the vertebral bodies and the intervertebral discs in lumbar segments adjacent to spondylolysis and spondylolisthesis: pilot study.
    Been E; Li L; Hunter DJ; Kalichman L
    Eur Spine J; 2011 Jul; 20(7):1159-65. PubMed ID: 21181481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The significance of mechanical factors in the development of spondylolysis. Experimental studies (author's transl)].
    Schmitt E; Jilke HJ
    Z Orthop Ihre Grenzgeb; 1982; 120(3):354-7. PubMed ID: 7113378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interpedicular kinematics in an in vitro biomechanical assessment of a bilateral lumbar spondylolytic defect.
    Chamoli U; Chen AS; Diwan AD
    Clin Biomech (Bristol, Avon); 2014 Dec; 29(10):1108-15. PubMed ID: 25454471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facet joint arthrography in lumbar spondylolysis: anatomic basis for spread of contrast medium.
    McCormick CC; Taylor JR; Twomey LT
    Radiology; 1989 Apr; 171(1):193-6. PubMed ID: 2928525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spondylolysis and spondylolisthesis in children.
    Hensinger RN
    Instr Course Lect; 1983; 32():132-51. PubMed ID: 6546062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High Sacral Endplate Inclination Vector Forces Are Associated with Pars Fracture-Mediated Lumbosacral Spondylolisthesis.
    Koffie RM; Yanamadala V; Coumans JV
    World Neurosurg; 2019 Feb; 122():e790-e794. PubMed ID: 30391597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The pathophysiology of degenerative disease of the lumbar spine.
    Yong-Hing K; Kirkaldy-Willis WH
    Orthop Clin North Am; 1983 Jul; 14(3):491-504. PubMed ID: 6346204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Towards establishing an occupational threshold for cumulative shear force in the vertebral joint - an in vitro evaluation of a risk factor for spondylolytic fractures using porcine specimens.
    Howarth SJ; Callaghan JP
    Clin Biomech (Bristol, Avon); 2013 Mar; 28(3):246-54. PubMed ID: 23360894
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.