BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 18923561)

  • 21. Quantifying cardiorespiratory responses resulting from speed and slope increments during motorized treadmill propulsion among manual wheelchair users.
    Gauthier C; Grangeon M; Ananos L; Brosseau R; Gagnon DH
    Ann Phys Rehabil Med; 2017 Sep; 60(5):281-288. PubMed ID: 28410868
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Efficiency and perceived exertion of manual wheelchair propulsion: a physiological comparison of push vs pull wheeling.
    Habibi A; MacGillivray MK; Kalra H; Sawatzky BJ
    J Med Eng Technol; 2021 May; 45(4):249-257. PubMed ID: 33769164
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A physiological comparison of synchronous and asynchronous hand cycling.
    Dallmeijer AJ; Ottjes L; de Waardt E; van der Woude LH
    Int J Sports Med; 2004 Nov; 25(8):622-6. PubMed ID: 15532007
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regulating exercise intensity using ratings of perceived exertion during arm and leg ergometry.
    Kang J; Chaloupka EC; Mastrangelo MA; Donnelly MS; Martz WP; Robertson RJ
    Eur J Appl Physiol Occup Physiol; 1998 Aug; 78(3):241-6. PubMed ID: 9721003
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of synchronous versus asynchronous mode of propulsion on wheelchair basketball sprinting.
    Faupin A; Borel B; Meyer C; Gorce P; Watelain E
    Disabil Rehabil Assist Technol; 2013 Nov; 8(6):496-501. PubMed ID: 23350881
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prediction of peak oxygen uptake from differentiated ratings of perceived exertion during wheelchair propulsion in trained wheelchair sportspersons.
    Goosey-Tolfrey VL; Paulson TA; Tolfrey K; Eston RG
    Eur J Appl Physiol; 2014 Jun; 114(6):1251-8. PubMed ID: 24610244
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Muscular efficiency during arm cranking and wheelchair exercise: a comparison.
    Hintzy F; Tordi N; Perrey S
    Int J Sports Med; 2002 Aug; 23(6):408-14. PubMed ID: 12215959
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Initial Skill Acquisition of Handrim Wheelchair Propulsion: A New Perspective.
    Vegter RJ; de Groot S; Lamoth CJ; Veeger DH; van der Woude LH
    IEEE Trans Neural Syst Rehabil Eng; 2014 Jan; 22(1):104-13. PubMed ID: 24122567
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Overall and differentiated ratings of perceived exertion at the respiratory compensation threshold: effects of gender and mode.
    Green JM; Crews TR; Bosak AM; Peveler WW
    Eur J Appl Physiol; 2003 Jun; 89(5):445-50. PubMed ID: 12748864
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Adaptations in physiology and propulsion techniques during the initial phase of learning manual wheelchair propulsion.
    de Groot S; Veeger HE; Hollander AP; van der Woude LH
    Am J Phys Med Rehabil; 2003 Jul; 82(7):504-10. PubMed ID: 12819537
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Perceived exertion responses to wheelchair propulsion differ between novice able-bodied and trained wheelchair sportspeople.
    Hutchinson MJ; Kilgallon JW; Leicht CA; Goosey-Tolfrey VL
    J Sci Med Sport; 2020 Apr; 23(4):403-407. PubMed ID: 31706827
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Effect of Rocktape on Rating of Perceived Exertion and Cycling Efficiency.
    Miller MG; Michael TJ; Nicholson KS; Petro RV; Hanson NJ; Prater DR
    J Strength Cond Res; 2015 Sep; 29(9):2608-12. PubMed ID: 26313577
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The effect of crank rate on physiological responses and exercise efficiency using a range of submaximal workloads during arm crank ergometry.
    Smith PM; Doherty M; Price MJ
    Int J Sports Med; 2006 Mar; 27(3):199-204. PubMed ID: 16541375
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hand rim configuration: effects on physical strain and technique in unimpaired subjects?
    van der Woude LH; Formanoy M; de Groot S
    Med Eng Phys; 2003 Nov; 25(9):765-74. PubMed ID: 14519349
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A novel push-pull central-lever mechanism reduces peak forces and energy-cost compared to hand-rim wheelchair propulsion during a controlled lab-based experiment.
    le Rütte TA; Trigo F; Bessems L; van der Woude LHV; Vegter RJK
    J Neuroeng Rehabil; 2022 Mar; 19(1):30. PubMed ID: 35300710
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Maximal physiological responses during arm cranking and treadmill wheelchair propulsion in T4-T6 paraplegic men.
    Gass EM; Harvey LA; Gass GC
    Paraplegia; 1995 May; 33(5):267-70. PubMed ID: 7630652
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Arm crank vs handrim wheelchair propulsion: metabolic and cardiopulmonary responses.
    Smith PA; Glaser RM; Petrofsky JS; Underwood PD; Smith GB; Richard JJ
    Arch Phys Med Rehabil; 1983 Jun; 64(6):249-54. PubMed ID: 6860094
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Physical strain and mechanical efficiency in hubcrank and handrim wheelchair propulsion.
    van der Woude LH; van Kranen E; Ariëns G; Rozendal RH; Veeger HE
    J Med Eng Technol; 1995; 19(4):123-31. PubMed ID: 8544207
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of handrim velocity on mechanical efficiency in wheelchair propulsion.
    Veeger HE; van der Woude LH; Rozendal RH
    Med Sci Sports Exerc; 1992 Jan; 24(1):100-7. PubMed ID: 1548983
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effect of steering on the physiological energy cost of wheelchair propulsion.
    Reid M; Lawrie AT; Hunter J; Warren PM
    Scand J Rehabil Med; 1990; 22(3):139-43. PubMed ID: 2244191
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.