These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Experimental demonstration of the magnetic field concentration effect in circuit-based magnetic near-zero index media. Chen Y; Guo Z; Wang Y; Chen X; Jiang H; Chen H Opt Express; 2020 May; 28(11):17064-17075. PubMed ID: 32549516 [TBL] [Abstract][Full Text] [Related]
24. Kapitza homogenization of deep gratings for designing dielectric metamaterials. Rizza C; Ciattoni A Opt Lett; 2013 Sep; 38(18):3658-60. PubMed ID: 24104839 [TBL] [Abstract][Full Text] [Related]
25. Direct measurement of evanescent wave enhancement inside passive metamaterials. Popa BI; Cummer SA Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jan; 73(1 Pt 2):016617. PubMed ID: 16486305 [TBL] [Abstract][Full Text] [Related]
26. Spatial dispersion in metamaterials with negative dielectric permittivity and its effect on surface waves. Shapiro MA; Shvets G; Sirigiri JR; Temkin RJ Opt Lett; 2006 Jul; 31(13):2051-3. PubMed ID: 16770429 [TBL] [Abstract][Full Text] [Related]
27. Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials. Kaina N; Lemoult F; Fink M; Lerosey G Nature; 2015 Sep; 525(7567):77-81. PubMed ID: 26333466 [TBL] [Abstract][Full Text] [Related]
29. Wide-angle transmissions of electromagnetic fields through the sandwiched transparent epsilon-near-zero metamaterial screen. Yang R; Yang P; Chen Y; Li J; Lei Z Opt Lett; 2018 Jan; 43(1):5-8. PubMed ID: 29328227 [TBL] [Abstract][Full Text] [Related]
31. Negative refractive index in chiral metamaterials. Zhang S; Park YS; Li J; Lu X; Zhang W; Zhang X Phys Rev Lett; 2009 Jan; 102(2):023901. PubMed ID: 19257274 [TBL] [Abstract][Full Text] [Related]
32. Continuous topological transition from metal to dielectric. Yang F; Ma S; Ding K; Zhang S; Pendry JB Proc Natl Acad Sci U S A; 2020 Jul; 117(29):16739-16742. PubMed ID: 32636263 [TBL] [Abstract][Full Text] [Related]
33. Near perfect light trapping in a 2D gold nanotrench grating at oblique angles of incidence and its application for sensing. Guo J; Li Z; Guo H Opt Express; 2016 Jul; 24(15):17259-71. PubMed ID: 27464175 [TBL] [Abstract][Full Text] [Related]
34. Adjustable Graphene/Polyolefin Elastomer Epsilon-near-Zero Metamaterials at Radiofrequency Range. Dai J; Luo H; Moloney M; Qiu J ACS Appl Mater Interfaces; 2020 May; 12(19):22019-22028. PubMed ID: 32315530 [TBL] [Abstract][Full Text] [Related]
35. Three-dimensional metamaterials with an ultrahigh effective refractive index over a broad bandwidth. Shin J; Shen JT; Fan S Phys Rev Lett; 2009 Mar; 102(9):093903. PubMed ID: 19392520 [TBL] [Abstract][Full Text] [Related]
36. Dielectric singularity in hyperbolic metamaterials: the inversion point of coexisting anisotropies. Caligiuri V; Dhama R; Sreekanth KV; Strangi G; De Luca A Sci Rep; 2016 Feb; 6():20002. PubMed ID: 26833022 [TBL] [Abstract][Full Text] [Related]
37. Enhanced generation of a second-harmonic wave in a composite of metamaterial and microwave plasma with various permittivities. Iwai A; Nakamura Y; Sakai O Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):033105. PubMed ID: 26465573 [TBL] [Abstract][Full Text] [Related]
38. Determination of effective parameters of fishnet metamaterials with vortex based interferometry. Cao W; Gao J; Yang X Opt Express; 2020 Jul; 28(14):20051-20061. PubMed ID: 32680072 [TBL] [Abstract][Full Text] [Related]
39. Broadband gradient index microwave quasi-optical elements based on non-resonant metamaterials. Liu R; Cheng Q; Chin JY; Mock JJ; Cui TJ; Smith DR Opt Express; 2009 Nov; 17(23):21030-41. PubMed ID: 19997341 [TBL] [Abstract][Full Text] [Related]