These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 18923948)
1. Pulmonary deposition of aerosolized Bacillus atrophaeus in a Swine model due to exposure from a simulated anthrax letter incident. Duncan EJ; Kournikakis B; Ho J; Hill I Inhal Toxicol; 2009 Feb; 21(2):141-52. PubMed ID: 18923948 [TBL] [Abstract][Full Text] [Related]
3. Anthrax letters: personal exposure, building contamination, and effectiveness of immediate mitigation measures. Kournikakis B; Ho J; Duncan S J Occup Environ Hyg; 2010 Feb; 7(2):71-9. PubMed ID: 19916102 [TBL] [Abstract][Full Text] [Related]
4. Aerosol and Surface Deposition Characteristics of Two Surrogates for Bacillus anthracis Spores. Bishop AH; Stapleton HL Appl Environ Microbiol; 2016 Nov; 82(22):6682-6690. PubMed ID: 27613681 [TBL] [Abstract][Full Text] [Related]
5. Is there an infection risk when playing drums contaminated with Bacillus anthracis? Bennett AM; Pottage T; Parks SR J Appl Microbiol; 2016 Sep; 121(3):840-5. PubMed ID: 27348508 [TBL] [Abstract][Full Text] [Related]
6. Anthrax letters in an open office environment: effects of selected CDC response guidelines on personal exposure and building contamination. Kournikakis B; Martinez KF; McCleery RE; Shadomy SV; Ramos G J Occup Environ Hyg; 2011 Feb; 8(2):113-22. PubMed ID: 21253984 [TBL] [Abstract][Full Text] [Related]
7. Fate and transport of viable Wood JP; Silvestri E; Pirhalla M; Serre SD; Calfee MW; McConkey K; Boe T; Monge M; Aslett D; Abdel-Hady A J Air Waste Manag Assoc; 2024 Jul; 74(7):464-477. PubMed ID: 38775962 [TBL] [Abstract][Full Text] [Related]
8. Inhaled non-capsulated Bacillus anthracis in A/J mice: nasopharynx and alveolar space as dual portals of entry, delayed dissemination, and specific organ targeting. Glomski IJ; Dumetz F; Jouvion G; Huerre MR; Mock M; Goossens PL Microbes Infect; 2008 Oct; 10(12-13):1398-404. PubMed ID: 18762267 [TBL] [Abstract][Full Text] [Related]
9. Multigeneration Cross-Contamination of Mail with Bacillus anthracis Spores. Edmonds J; Lindquist HD; Sabol J; Martinez K; Shadomy S; Cymet T; Emanuel P PLoS One; 2016; 11(4):e0152225. PubMed ID: 27123934 [TBL] [Abstract][Full Text] [Related]
10. Inhalational anthrax (Ames aerosol) in naïve and vaccinated New Zealand rabbits: characterizing the spread of bacteria from lung deposition to bacteremia. Gutting BW; Nichols TL; Channel SR; Gearhart JM; Andrews GA; Berger AE; Mackie RS; Watson BJ; Taft SC; Overheim KA; Sherwood RL Front Cell Infect Microbiol; 2012; 2():87. PubMed ID: 22919678 [TBL] [Abstract][Full Text] [Related]
11. A Stochastic Intracellular Model of Anthrax Infection With Spore Germination Heterogeneity. Williams B; López-García M; Gillard JJ; Laws TR; Lythe G; Carruthers J; Finnie T; Molina-París C Front Immunol; 2021; 12():688257. PubMed ID: 34497601 [TBL] [Abstract][Full Text] [Related]
12. Human monoclonal antibody AVP-21D9 to protective antigen reduces dissemination of the Bacillus anthracis Ames strain from the lungs in a rabbit model. Peterson JW; Comer JE; Baze WB; Noffsinger DM; Wenglikowski A; Walberg KG; Hardcastle J; Pawlik J; Bush K; Taormina J; Moen S; Thomas J; Chatuev BM; Sower L; Chopra AK; Stanberry LR; Sawada R; Scholz WW; Sircar J Infect Immun; 2007 Jul; 75(7):3414-24. PubMed ID: 17452469 [TBL] [Abstract][Full Text] [Related]
14. Effects of altering the germination potential of Bacillus anthracis spores by exogenous means in a mouse model. Cote CK; Bozue J; Twenhafel N; Welkos SL J Med Microbiol; 2009 Jun; 58(Pt 6):816-825. PubMed ID: 19429760 [TBL] [Abstract][Full Text] [Related]
15. Bacillus anthracis contamination and inhalational anthrax in a mail processing and distribution center. Sanderson WT; Stoddard RR; Echt AS; Piacitelli CA; Kim D; Horan J; Davies MM; McCleery RE; Muller P; Schnorr TM; Ward EM; Hales TR J Appl Microbiol; 2004; 96(5):1048-56. PubMed ID: 15078521 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of personal inhalable aerosol samplers with different filters for use during anthrax responses. Grinshpun SA; Weber AM; Yermakov M; Indugula R; Elmashae Y; Reponen T; Rose L J Occup Environ Hyg; 2017 Aug; 14(8):585-595. PubMed ID: 28506101 [TBL] [Abstract][Full Text] [Related]
17. Antimicrobial effects of interferon-inducible CXC chemokines against Bacillus anthracis spores and bacilli. Crawford MA; Zhu Y; Green CS; Burdick MD; Sanz P; Alem F; O'Brien AD; Mehrad B; Strieter RM; Hughes MA Infect Immun; 2009 Apr; 77(4):1664-78. PubMed ID: 19179419 [TBL] [Abstract][Full Text] [Related]
18. An integrated experimental-computational approach for predicting virulence in New Zealand white rabbits and humans following inhalation exposure to Bacillus anthracis spores. Hess BM; Thomas DG; Weber TJ; Hutchison JR; Straub TM; Bruckner-Lea CJ; Powell JD; Kabilan S; Corley RA PLoS One; 2019; 14(7):e0219160. PubMed ID: 31260462 [TBL] [Abstract][Full Text] [Related]
20. Transport of Bacillus anthracis from the lungs to the draining lymph nodes is a rapid process facilitated by CD11c+ cells. Shetron-Rama LM; Herring-Palmer AC; Huffnagle GB; Hanna P Microb Pathog; 2010; 49(1-2):38-46. PubMed ID: 20188814 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]