BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 18924070)

  • 1. Cortical brain mapping of peripheral nerves using functional magnetic resonance imaging in a rodent model.
    Cho YR; Jones SR; Pawela CP; Li R; Kao DS; Schulte ML; Runquist ML; Yan JG; Hudetz AG; Jaradeh SS; Hyde JS; Matloub HS
    J Reconstr Microsurg; 2008 Nov; 24(8):551-7. PubMed ID: 18924070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Refining the sensory and motor ratunculus of the rat upper extremity using fMRI and direct nerve stimulation.
    Cho YR; Pawela CP; Li R; Kao D; Schulte ML; Runquist ML; Yan JG; Matloub HS; Jaradeh SS; Hudetz AG; Hyde JS
    Magn Reson Med; 2007 Nov; 58(5):901-9. PubMed ID: 17969116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. C7 nerve root sensory distribution in peripheral nerves: a bold functional magnetic resonance imaging investigation at 9.4 T.
    Li R; Machol JA; Liu X; Hettinger PC; Flugstad NA; Yan JG; Matloub HS; Hyde JS
    Muscle Nerve; 2014 Jan; 49(1):40-6. PubMed ID: 23558801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional MRI at 4.7 tesla of the rat brain during electric stimulation of forepaw, hindpaw, or tail in single- and multislice experiments.
    Spenger C; Josephson A; Klason T; Hoehn M; Schwindt W; Ingvar M; Olson L
    Exp Neurol; 2000 Dec; 166(2):246-53. PubMed ID: 11085890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Convergence of sensory inputs upon projection neurons of somatosensory cortex.
    Zarzecki P; Wiggin DM
    Exp Brain Res; 1982; 48(1):28-42. PubMed ID: 7140889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nerve innervation of the hand and associated nerve dominance aggregates in the somatosensory cortex of a primate (squirrel monkey).
    Wall JT; Nepomuceno V; Rasey SK
    J Comp Neurol; 1993 Nov; 337(2):191-207. PubMed ID: 8276997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrophysiological evidence for overlapping dominant and latent inputs to somatosensory cortex in squirrel monkeys.
    Schroeder CE; Seto S; Arezzo JC; Garraghty PE
    J Neurophysiol; 1995 Aug; 74(2):722-32. PubMed ID: 7472377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Short latency somatosensory evoked potentials from radial, median and ulnar nerve stimulation in man.
    Grisolia JS; Wiederholt WC
    Electroencephalogr Clin Neurophysiol; 1980 Dec; 50(5-6):375-81. PubMed ID: 6160981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of peripheral nerve crush injury with cortical somatosensory evoked potentials in the cat.
    Kawakami Y; Suzuki H; Dong WK
    Exp Neurol; 1989 Feb; 103(2):146-53. PubMed ID: 2912757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Laminar distribution and convergence of deep and superficial peripheral inputs in the forelimb representation of rat SI somatosensory cortex.
    Lamour Y; Jobert A
    J Physiol (Paris); 1982 Aug; 78(2):158-62. PubMed ID: 7131329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative assessment of cortical somatosensory digit representations after median and ulnar nerve injury in rats.
    Hulsey DR; Mian TM; Darrow MJ; Hays SA
    Exp Brain Res; 2019 Sep; 237(9):2297-2304. PubMed ID: 31273391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mapping cortical representations of the rodent forepaw and hindpaw with BOLD fMRI reveals two spatial boundaries.
    Goloshevsky AG; Wu CW; Dodd SJ; Koretsky AP
    Neuroimage; 2011 Jul; 57(2):526-38. PubMed ID: 21504796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Summated cortical evoked response testing in the deafferented primate.
    Cohn R; Jakniunas A; Taub E
    Science; 1972 Dec; 178(4065):1113-5. PubMed ID: 4343845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of forelimb function by digital video motion analysis in rat nerve transection models.
    Wang H; Spinner RJ; Sorenson EJ; Windebank AJ
    J Peripher Nerv Syst; 2008 Mar; 13(1):92-102. PubMed ID: 18346235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cortical characterization and inter-dipole distance between unilateral median versus ulnar nerve stimulation of both hands in MEG.
    Theuvenet PJ; van Dijk BW; Peters MJ; van Ree JM; Lopes da Silva FL; Chen AC
    Brain Topogr; 2006; 19(1-2):29-42. PubMed ID: 16977490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional MRI detection of bilateral cortical reorganization in the rodent brain following peripheral nerve deafferentation.
    Pelled G; Chuang KH; Dodd SJ; Koretsky AP
    Neuroimage; 2007 Aug; 37(1):262-73. PubMed ID: 17544301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differences in the BOLD fMRI response to direct and indirect cortical stimulation in the rat.
    Austin VC; Blamire AM; Grieve SM; O'Neill MJ; Styles P; Matthews PM; Sibson NR
    Magn Reson Med; 2003 May; 49(5):838-47. PubMed ID: 12704766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel rat forelimb model of neuropathic pain produced by partial injury of the median and ulnar nerves.
    Yi H; Kim MA; Back SK; Eun JS; Na HS
    Eur J Pain; 2011 May; 15(5):459-66. PubMed ID: 20965754
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A clinical pilot study to assess functional return following continuous muscle stimulation after nerve injury and repair in the upper extremity using a completely implantable electrical system.
    Williams HB
    Microsurgery; 1996; 17(11):597-605. PubMed ID: 9514518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of intravenous lidocaine on brain activation during non-noxious and acute noxious stimulation of the forepaw: a functional magnetic resonance imaging study in the rat.
    Luo Z; Yu M; Smith SD; Kritzer M; Du C; Ma Y; Volkow ND; Glass PS; Benveniste H
    Anesth Analg; 2009 Jan; 108(1):334-44. PubMed ID: 19095870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.