BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 18925602)

  • 1. Monolithic polymers for cell cultivation, differentiation, and tissue engineering.
    Löber A; Verch A; Schlemmer B; Höfer S; Frerich B; Buchmeiser MR
    Angew Chem Int Ed Engl; 2008; 47(47):9138-41. PubMed ID: 18925602
    [No Abstract]   [Full Text] [Related]  

  • 2. Human adipose-derived stem cells (hASCs) proliferate and differentiate in osteoblast-like cells on trabecular titanium scaffolds.
    Gastaldi G; Asti A; Scaffino MF; Visai L; Saino E; Cometa AM; Benazzo F
    J Biomed Mater Res A; 2010 Sep; 94(3):790-9. PubMed ID: 20336739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proliferation and differentiation of adipose-derived stem cells on naturally derived scaffolds.
    Flynn LE; Prestwich GD; Semple JL; Woodhouse KA
    Biomaterials; 2008 Apr; 29(12):1862-71. PubMed ID: 18242690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Osteogenic and adipogenic differentiation of rat bone marrow cells on non-mulberry and mulberry silk gland fibroin 3D scaffolds.
    Mandal BB; Kundu SC
    Biomaterials; 2009 Oct; 30(28):5019-30. PubMed ID: 19577292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ex vivo expansion of adipose tissue-derived stem cells in spinner flasks.
    Zhu Y; Liu T; Song K; Fan X; Ma X; Cui Z
    Biotechnol J; 2009 Aug; 4(8):1198-209. PubMed ID: 19404993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomaterials for stem cell differentiation.
    Dawson E; Mapili G; Erickson K; Taqvi S; Roy K
    Adv Drug Deliv Rev; 2008 Jan; 60(2):215-28. PubMed ID: 17997187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scaffold's surface geometry significantly affects human stem cell bone tissue engineering.
    Graziano A; d'Aquino R; Cusella-De Angelis MG; De Francesco F; Giordano A; Laino G; Piattelli A; Traini T; De Rosa A; Papaccio G
    J Cell Physiol; 2008 Jan; 214(1):166-72. PubMed ID: 17565721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combining adipose-derived stem cells, resorbable scaffolds and growth factors: an overview of tissue engineering.
    Sándor GK; Suuronen R
    J Can Dent Assoc; 2008 Mar; 74(2):167-70. PubMed ID: 18353203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The use of poly(L-lactide-co-caprolactone) as a scaffold for adipose stem cells in bone tissue engineering: application in a spinal fusion model.
    Vergroesen PP; Kroeze RJ; Helder MN; Smit TH
    Macromol Biosci; 2011 Jun; 11(6):722-30. PubMed ID: 21400658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimisation of polymer scaffolds for retinal pigment epithelium (RPE) cell transplantation.
    Thomson HA; Treharne AJ; Walker P; Grossel MC; Lotery AJ
    Br J Ophthalmol; 2011 Apr; 95(4):563-8. PubMed ID: 19965827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advances in polymeric systems for tissue engineering and biomedical applications.
    Ravichandran R; Sundarrajan S; Venugopal JR; Mukherjee S; Ramakrishna S
    Macromol Biosci; 2012 Mar; 12(3):286-311. PubMed ID: 22278779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stem cells and adipose tissue engineering.
    Gomillion CT; Burg KJ
    Biomaterials; 2006 Dec; 27(36):6052-63. PubMed ID: 16973213
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro evaluation of textile chitosan scaffolds for tissue engineering using human bone marrow stromal cells.
    Heinemann C; Heinemann S; Lode A; Bernhardt A; Worch H; Hanke T
    Biomacromolecules; 2009 May; 10(5):1305-10. PubMed ID: 19344120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved infiltration of stem cells on electrospun nanofibers.
    Shabani I; Haddadi-Asl V; Seyedjafari E; Babaeijandaghi F; Soleimani M
    Biochem Biophys Res Commun; 2009 Apr; 382(1):129-33. PubMed ID: 19265673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biologic augmentation of polymer scaffolds for bone repair.
    Guldberg RE; Oest ME; Dupont K; Peister A; Deutsch E; Kolambkar Y; Mooney D
    J Musculoskelet Neuronal Interact; 2007; 7(4):333-4. PubMed ID: 18094499
    [No Abstract]   [Full Text] [Related]  

  • 16. Cell-secreted extracellular matrix formation and differentiation of adipose-derived stem cells in 3D alginate scaffolds with tunable properties.
    Guneta V; Loh QL; Choong C
    J Biomed Mater Res A; 2016 May; 104(5):1090-101. PubMed ID: 26749566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradable fumarate-based polyHIPEs as tissue engineering scaffolds.
    Christenson EM; Soofi W; Holm JL; Cameron NR; Mikos AG
    Biomacromolecules; 2007 Dec; 8(12):3806-14. PubMed ID: 17979240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PHB/PHBHHx scaffolds and human adipose-derived stem cells for cartilage tissue engineering.
    Ye C; Hu P; Ma MX; Xiang Y; Liu RG; Shang XW
    Biomaterials; 2009 Sep; 30(26):4401-6. PubMed ID: 19481254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [The biologic functional surfaces and their applications in tissue engineering].
    Yao F; Chen M; Zhang H; Zhang H; An X; Yao K
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Oct; 24(5):1177-9, 1199. PubMed ID: 18027721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physical cues of biomaterials guide stem cell differentiation fate.
    Higuchi A; Ling QD; Chang Y; Hsu ST; Umezawa A
    Chem Rev; 2013 May; 113(5):3297-328. PubMed ID: 23391258
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 13.