BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

373 related articles for article (PubMed ID: 18925937)

  • 1. AMMOS: Automated Molecular Mechanics Optimization tool for in silico Screening.
    Pencheva T; Lagorce D; Pajeva I; Villoutreix BO; Miteva MA
    BMC Bioinformatics; 2008 Oct; 9():438. PubMed ID: 18925937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AMMOS2: a web server for protein-ligand-water complexes refinement via molecular mechanics.
    Labbé CM; Pencheva T; Jereva D; Desvillechabrol D; Becot J; Villoutreix BO; Pajeva I; Miteva MA
    Nucleic Acids Res; 2017 Jul; 45(W1):W350-W355. PubMed ID: 28486703
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DG-AMMOS: a new tool to generate 3d conformation of small molecules using distance geometry and automated molecular mechanics optimization for in silico screening.
    Lagorce D; Pencheva T; Villoutreix BO; Miteva MA
    BMC Chem Biol; 2009 Nov; 9():6. PubMed ID: 19912625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Post-docking optimization and analysis of protein-ligand interactions of estrogen receptor alpha using AMMOS software.
    Pencheva T; Jereva D; Miteva MA; Pajeva I
    Curr Comput Aided Drug Des; 2013 Mar; 9(1):83-94. PubMed ID: 23106778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AMMOS software: method and application.
    Pencheva T; Lagorce D; Pajeva I; Villoutreix BO; Miteva MA
    Methods Mol Biol; 2012; 819():127-41. PubMed ID: 22183534
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional structure generators of drug-like compounds: DG-AMMOS, an open-source package.
    Lagorce D; Villoutreix BO; Miteva MA
    Expert Opin Drug Discov; 2011 Mar; 6(3):339-51. PubMed ID: 22647207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. QXP: powerful, rapid computer algorithms for structure-based drug design.
    McMartin C; Bohacek RS
    J Comput Aided Mol Des; 1997 Jul; 11(4):333-44. PubMed ID: 9334900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advances in Docking.
    Sulimov VB; Kutov DC; Sulimov AV
    Curr Med Chem; 2019; 26(42):7555-7580. PubMed ID: 30182836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure-based virtual screening of the nociceptin receptor: hybrid docking and shape-based approaches for improved hit identification.
    Daga PR; Polgar WE; Zaveri NT
    J Chem Inf Model; 2014 Oct; 54(10):2732-43. PubMed ID: 25148595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein flexibility in ligand docking and virtual screening to protein kinases.
    Cavasotto CN; Abagyan RA
    J Mol Biol; 2004 Mar; 337(1):209-25. PubMed ID: 15001363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lead finder: an approach to improve accuracy of protein-ligand docking, binding energy estimation, and virtual screening.
    Stroganov OV; Novikov FN; Stroylov VS; Kulkov V; Chilov GG
    J Chem Inf Model; 2008 Dec; 48(12):2371-85. PubMed ID: 19007114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensitivity of molecular docking to induced fit effects in influenza virus neuraminidase.
    Birch L; Murray CW; Hartshorn MJ; Tickle IJ; Verdonk ML
    J Comput Aided Mol Des; 2002 Dec; 16(12):855-69. PubMed ID: 12825619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Receptor-based 3D QSAR analysis of estrogen receptor ligands--merging the accuracy of receptor-based alignments with the computational efficiency of ligand-based methods.
    Sippl W
    J Comput Aided Mol Des; 2000 Aug; 14(6):559-72. PubMed ID: 10921772
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AutoDockFR: Advances in Protein-Ligand Docking with Explicitly Specified Binding Site Flexibility.
    Ravindranath PA; Forli S; Goodsell DS; Olson AJ; Sanner MF
    PLoS Comput Biol; 2015 Dec; 11(12):e1004586. PubMed ID: 26629955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In silico fragment-based drug discovery: setup and validation of a fragment-to-lead computational protocol using S4MPLE.
    Hoffer L; Renaud JP; Horvath D
    J Chem Inf Model; 2013 Apr; 53(4):836-51. PubMed ID: 23537132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Binding site characteristics in structure-based virtual screening: evaluation of current docking tools.
    Schulz-Gasch T; Stahl M
    J Mol Model; 2003 Feb; 9(1):47-57. PubMed ID: 12638011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimal strategies for virtual screening of induced-fit and flexible target in the 2015 D3R Grand Challenge.
    Ye Z; Baumgartner MP; Wingert BM; Camacho CJ
    J Comput Aided Mol Des; 2016 Sep; 30(9):695-706. PubMed ID: 27573981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-based computational approaches for small-molecule modulation of protein-protein interactions.
    Xu D; Wang B; Meroueh SO
    Methods Mol Biol; 2015; 1278():77-92. PubMed ID: 25859944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Free resources to assist structure-based virtual ligand screening experiments.
    Villoutreix BO; Renault N; Lagorce D; Sperandio O; Montes M; Miteva MA
    Curr Protein Pept Sci; 2007 Aug; 8(4):381-411. PubMed ID: 17696871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LS-align: an atom-level, flexible ligand structural alignment algorithm for high-throughput virtual screening.
    Hu J; Liu Z; Yu DJ; Zhang Y
    Bioinformatics; 2018 Jul; 34(13):2209-2218. PubMed ID: 29462237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.