BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 18925974)

  • 1. Low-Density Lipoprotein concentration in the normal Left Coronary Artery tree.
    Soulis JV; Giannoglou GD; Papaioannou V; Parcharidis GE; Louridas GE
    Biomed Eng Online; 2008 Oct; 7():26. PubMed ID: 18925974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wall shear stress on LDL accumulation in human RCAs.
    Soulis JV; Fytanidis DK; Papaioannou VC; Giannoglou GD
    Med Eng Phys; 2010 Oct; 32(8):867-77. PubMed ID: 20580302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wall shear stress in normal left coronary artery tree.
    Soulis JV; Farmakis TM; Giannoglou GD; Louridas GE
    J Biomech; 2006; 39(4):742-9. PubMed ID: 16439244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wall pressure gradient in normal left coronary artery tree.
    Giannoglou GD; Soulis JV; Farmakis TM; Giannakoulas GA; Parcharidis GE; Louridas GE
    Med Eng Phys; 2005 Jul; 27(6):455-64. PubMed ID: 15990062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low Density Lipoprotein transport in the normal human aortic arch.
    Soulis J; Dimitrakopoulou M; Giannoglou G
    Hippokratia; 2014; 18(3):221-5. PubMed ID: 25694755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wall shear stress gradient topography in the normal left coronary arterial tree: possible implications for atherogenesis.
    Farmakis TM; Soulis JV; Giannoglou GD; Zioupos GJ; Louridas GE
    Curr Med Res Opin; 2004 May; 20(5):587-96. PubMed ID: 15140324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wall shear stress oscillation and its gradient in the normal left coronary artery tree bifurcations.
    Soulis J; Fytanidis D; Seralidou K; Giannoglou G
    Hippokratia; 2014 Jan; 18(1):12-6. PubMed ID: 25125945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alterations in regional vascular geometry produced by theoretical stent implantation influence distributions of wall shear stress: analysis of a curved coronary artery using 3D computational fluid dynamics modeling.
    LaDisa JF; Olson LE; Douglas HA; Warltier DC; Kersten JR; Pagel PS
    Biomed Eng Online; 2006 Jun; 5():40. PubMed ID: 16780592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Divergence of the normalized wall shear stress as an effective computational template of low-density lipoprotein polarization at the arterial blood-vessel wall interface.
    Mazzi V; De Nisco G; Calò K; Chiastra C; Daemen J; Steinman DA; Wentzel JJ; Morbiducci U; Gallo D
    Comput Methods Programs Biomed; 2022 Nov; 226():107174. PubMed ID: 36223707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low density lipoprotein transport through patient-specific thoracic arterial wall.
    Mpairaktaris DG; Soulis JV; Giannoglou GD
    Comput Biol Med; 2017 Oct; 89():115-126. PubMed ID: 28800440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular viscosity in the normal left coronary arterial tree. Is it related to atherosclerosis?
    Soulis JV; Farmakis TM; Giannoglou GD; Chatzizisis YS; Giannakoulas GA; Parcharidis GE; Louridas GE
    Angiology; 2006; 57(1):33-40. PubMed ID: 16444454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Image-based computational simulation of sub-endothelial LDL accumulation in a human right coronary artery.
    Nouri M; Jalali F; Karimi G; Zarrabi K
    Comput Biol Med; 2015 Jul; 62():206-21. PubMed ID: 25957745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical study on flow-dependent concentration polarization of low density lipoproteins at the luminal surface of a straight artery.
    Wada S; Karino T
    Biorheology; 1999; 36(3):207-23. PubMed ID: 10690269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large eddy simulation of LDL surface concentration in a subject specific human aorta.
    Lantz J; Karlsson M
    J Biomech; 2012 Feb; 45(3):537-42. PubMed ID: 22153749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flow parameters in normal left coronary artery tree. Implication to atherogenesis.
    Soulis JV; Giannoglou GD; Parcharidis GE; Louridas GE
    Comput Biol Med; 2007 May; 37(5):628-36. PubMed ID: 16920094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical prediction of low-density lipoproteins concentration at the luminal surface of an artery with a multiple bend.
    Wada S; Karino T
    Ann Biomed Eng; 2002 Jun; 30(6):778-91. PubMed ID: 12220078
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of oscillating flow on LDL transport and wall shear stress in the normal aortic arch.
    Soulis J; Giannoglou G; Dimitrakopoulou M; Papaioannou V; Logothetides S; Mikhailidis D
    Open Cardiovasc Med J; 2009 Sep; 3():128-42. PubMed ID: 19834577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation of LDL permeation into multilayer wall of a coronary bifurcation using WSS-dependent model: effects of hemorheology.
    Moniripiri M; Hassani Soukht Abandani M; Firoozabadi B
    Biomech Model Mechanobiol; 2023 Apr; 22(2):711-727. PubMed ID: 36525181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Concentration polarization of low density lipoproteins (LDL) in the arterial system.
    Fatouraee N; Deng X; De Champlain A; Guidoin R
    Ann N Y Acad Sci; 1998 Sep; 858():137-46. PubMed ID: 9917815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Luminal surface concentration of lipoprotein (LDL) and its effect on the wall uptake of cholesterol by canine carotid arteries.
    Deng X; Marois Y; How T; Merhi Y; King M; Guidoin R; Karino T
    J Vasc Surg; 1995 Jan; 21(1):135-45. PubMed ID: 7823352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.