These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. A molecular analysis of hyalin--a substrate for cell adhesion in the hyaline layer of the sea urchin embryo. Wessel GM; Berg L; Adelson DL; Cannon G; McClay DR Dev Biol; 1998 Jan; 193(2):115-26. PubMed ID: 9473317 [TBL] [Abstract][Full Text] [Related]
8. Gastrulation in the sea urchin, Strongylocentrotus purpuratus, is disrupted by the small laminin peptides YIGSR and IKVAV. Hawkins RL; Fan J; Hille MB Cell Adhes Commun; 1995 May; 3(2):163-77. PubMed ID: 7583008 [TBL] [Abstract][Full Text] [Related]
10. Sea urchin morphogenesis and cell-hyalin adhesion are perturbed by a monoclonal antibody specific for hyalin. Adelson DL; Humphreys T Development; 1988 Nov; 104(3):391-402. PubMed ID: 2476289 [TBL] [Abstract][Full Text] [Related]
11. Transcription of the Spec 1-like gene of Lytechinus is selectively inhibited in response to disruption of the extracellular matrix. Wessel GM; Zhang W; Tomlinson CR; Lennarz WJ; Klein WH Development; 1989 Jun; 106(2):355-65. PubMed ID: 2591320 [TBL] [Abstract][Full Text] [Related]
12. Localization and characterization of blastocoelic extracellular matrix antigens in early sea urchin embryos and evidence for their proteolytic modification during gastrulation. Vafa O; Goetzl L; Poccia D; Nishioka D Differentiation; 1996 Jun; 60(3):129-38. PubMed ID: 8766593 [TBL] [Abstract][Full Text] [Related]
13. The painted sea urchin, Lytechinus pictus, as a genetically-enabled developmental model. Nesbit KT; Fleming T; Batzel G; Pouv A; Rosenblatt HD; Pace DA; Hamdoun A; Lyons DC Methods Cell Biol; 2019; 150():105-123. PubMed ID: 30777173 [TBL] [Abstract][Full Text] [Related]
14. Archenteron elongation in the sea urchin embryo is a microtubule-independent process. Hardin JD Dev Biol; 1987 May; 121(1):253-62. PubMed ID: 3552789 [TBL] [Abstract][Full Text] [Related]
15. Tissue-specific, temporal changes in cell adhesion to echinonectin in the sea urchin embryo. Burdsal CA; Alliegro MC; McClay DR Dev Biol; 1991 Apr; 144(2):327-34. PubMed ID: 1707016 [TBL] [Abstract][Full Text] [Related]
16. An extracellular matrix molecule that is selectively expressed during development is important for gastrulation in the sea urchin embryo. Berg LK; Chen SW; Wessel GM Development; 1996 Feb; 122(2):703-13. PubMed ID: 8625821 [TBL] [Abstract][Full Text] [Related]
17. Role for platelet-derived growth factor-like and epidermal growth factor-like signaling pathways in gastrulation and spiculogenesis in the Lytechinus sea urchin embryo. Ramachandran RK; Govindarajan V; Seid CA; Patil S; Tomlinson CR Dev Dyn; 1995 Sep; 204(1):77-88. PubMed ID: 8563028 [TBL] [Abstract][Full Text] [Related]
18. New insights from a high-resolution look at gastrulation in the sea urchin, Lytechinus variegatus. Martik ML; McClay DR Mech Dev; 2017 Dec; 148():3-10. PubMed ID: 28684256 [TBL] [Abstract][Full Text] [Related]
19. Involvement of l(-)-rhamnose in sea urchin gastrulation. Part II: α-l-Rhamnosidase. Liang J; Aleksanyan H; Metzenberg S; Oppenheimer SB Zygote; 2016 Jun; 24(3):371-7. PubMed ID: 26168775 [TBL] [Abstract][Full Text] [Related]
20. A putative role for carbohydrates in sea urchin gastrulation. Latham VH; Tully MJ; Oppenheimer SB Acta Histochem; 1999 Jul; 101(3):293-303. PubMed ID: 10443292 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]