BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 18926012)

  • 1. Simulated radiance profiles for automating the interpretation of airborne passive multi-spectral infrared images.
    Sulub Y; Small GW
    Appl Spectrosc; 2008 Oct; 62(10):1049-59. PubMed ID: 18926012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Remote detection of volatile organic compounds by passive multispectral infrared imaging measurements.
    Wabomba MJ; Sulub Y; Small GW
    Appl Spectrosc; 2007 Apr; 61(4):349-58. PubMed ID: 17456252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthetic training sets for the development of discriminant functions for the detection of volatile organic compounds from passive infrared remote sensing data.
    Wan B; Small GW
    Analyst; 2011 Jan; 136(2):309-16. PubMed ID: 20953478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Remote detection of heated ethanol plumes by airborne passive Fourier transform infrared spectrometry.
    Tarumi T; Small GW; Combs RJ; Kroutil RT
    Appl Spectrosc; 2003 Nov; 57(11):1432-41. PubMed ID: 14658159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Airborne passive Fourier transform infrared remote sensing of methanol vapor from industrial emissions.
    Wan B; Small GW
    Analyst; 2008 Dec; 133(12):1776-84. PubMed ID: 19082083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Digital filtering implementations for the detection of broad spectral features by direct analysis of passive Fourier transform infrared interferograms.
    Tarumi T; Small GW; Combs RJ; Kroutil RT
    Appl Spectrosc; 2004 Apr; 58(4):432-41. PubMed ID: 17140493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural Networks Based on Synthesized Training Data for the Automated Detection of Chemical Plumes in Passive Infrared Multispectral Images.
    Chen Z; Small GW
    Appl Spectrosc; 2024 May; 78(5):504-516. PubMed ID: 38528747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Passive remote sensing of VOC in atmosphere by FTIR spectrometry].
    Gao MG; Liu WQ; Zhang TS; Liu JG; Lu YH; Zhu J; Lian Y; Lu F
    Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Jul; 25(7):1042-4. PubMed ID: 16241050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved methods for performing multivariate analysis and deriving background spectra in atmospheric open-path FT-IR monitoring.
    Hong D; Cho S
    Appl Spectrosc; 2003 Mar; 57(3):299-308. PubMed ID: 14658622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and field application of an automated cartridge sampler for VOC concentration and flux measurements.
    Kuhn U; Dindorf T; Ammann C; Rottenberger S; Guyon P; Holzinger R; Ausma S; Kenntner T; Helleis F; Kesselmeier J
    J Environ Monit; 2005 Jun; 7(6):568-76. PubMed ID: 15931416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous, intermittent and passive sampling of airborne VOCs.
    Jia C; Batterman S; Godwin C
    J Environ Monit; 2007 Nov; 9(11):1220-30. PubMed ID: 17968449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reproducibility and imputation of air toxics data.
    Le HQ; Batterman SA; Wahl RL
    J Environ Monit; 2007 Dec; 9(12):1358-72. PubMed ID: 18049775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial analysis and land use regression of VOCs and NO(2) from school-based urban air monitoring in Detroit/Dearborn, USA.
    Mukerjee S; Smith LA; Johnson MM; Neas LM; Stallings CA
    Sci Total Environ; 2009 Aug; 407(16):4642-51. PubMed ID: 19467697
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Locating industrial VOC sources with aircraft observations.
    Toscano P; Gioli B; Dugheri S; Salvini A; Matese A; Bonacchi A; Zaldei A; Cupelli V; Miglietta F
    Environ Pollut; 2011 May; 159(5):1174-82. PubMed ID: 21376441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Errors analysis on temperature and emissivity determination from hyperspectral thermal infrared data.
    OuYang X; Wang N; Wu H; Li ZL
    Opt Express; 2010 Jan; 18(2):544-50. PubMed ID: 20173873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and application of a multi-channel monitoring system for near real-time VOC measurement in a hazardous waste management facility.
    Je CH; Stone R; Oberg SG
    Sci Total Environ; 2007 Sep; 382(2-3):364-74. PubMed ID: 17521707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust classifier for the automated detection of ammonia in heated plumes by passive fourier transform infrared spectrometry.
    Wabomba MJ; Small GW
    Anal Chem; 2003 May; 75(9):2018-26. PubMed ID: 12720335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Field comparison of disjunct and conventional eddy covariance techniques for trace gas flux measurements.
    Rinne J; Douffet T; Prigent Y; Durand P
    Environ Pollut; 2008 Apr; 152(3):630-5. PubMed ID: 17707112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The infrared spectral signatures of disease: extracting the distinguishing spectral features between normal and diseased states.
    Diem M; Papamarkakis K; Schubert J; Bird B; Romeo MJ; Miljković M
    Appl Spectrosc; 2009 Nov; 63(11):307A-318A. PubMed ID: 19891826
    [No Abstract]   [Full Text] [Related]  

  • 20. Classifying algorithms for SIFT-MS technology and medical diagnosis.
    Moorhead KT; Lee D; Chase JG; Moot AR; Ledingham KM; Scotter J; Allardyce RA; Senthilmohan ST; Endre Z
    Comput Methods Programs Biomed; 2008 Mar; 89(3):226-38. PubMed ID: 18187228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.