BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 18926013)

  • 1. Chemical probing of single cancer cells with gold nanoaggregates by surface-enhanced Raman scattering.
    Tang HW; Yang XB; Kirkham J; Smith DA
    Appl Spectrosc; 2008 Oct; 62(10):1060-9. PubMed ID: 18926013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing intrinsic and extrinsic components in single osteosarcoma cells by near-infrared surface-enhanced Raman scattering.
    Tang HW; Yang XB; Kirkham J; Smith DA
    Anal Chem; 2007 May; 79(10):3646-53. PubMed ID: 17441678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cetyltrimethylammonium bromide-modified spherical and cube-like gold nanoparticles as extrinsic Raman labels in surface-enhanced Raman spectroscopy based heterogeneous immunoassays.
    Narayanan R; Lipert RJ; Porter MD
    Anal Chem; 2008 Mar; 80(6):2265-71. PubMed ID: 18290676
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo detection of gold-imidazole self-assembly complexes: NIR-SERS signal reporters.
    Souza GR; Levin CS; Hajitou A; Pasqualini R; Arap W; Miller JH
    Anal Chem; 2006 Sep; 78(17):6232-7. PubMed ID: 16944906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregates-from single-molecule Raman spectroscopy to ultrasensitive probing in live cells.
    Kneipp K; Kneipp H; Kneipp J
    Acc Chem Res; 2006 Jul; 39(7):443-50. PubMed ID: 16846208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Silica-void-gold nanoparticles: temporally stable surface-enhanced Raman scattering substrates.
    Roca M; Haes AJ
    J Am Chem Soc; 2008 Oct; 130(43):14273-9. PubMed ID: 18831552
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nuclear targeted nanoprobe for single living cell detection by surface-enhanced Raman scattering.
    Xie W; Wang L; Zhang Y; Su L; Shen A; Tan J; Hu J
    Bioconjug Chem; 2009 Apr; 20(4):768-73. PubMed ID: 19267459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface-enhanced Raman scattering imaging of HER2 cancer markers overexpressed in single MCF7 cells using antibody conjugated hollow gold nanospheres.
    Lee S; Chon H; Lee M; Choo J; Shin SY; Lee YH; Rhyu IJ; Son SW; Oh CH
    Biosens Bioelectron; 2009 Mar; 24(7):2260-3. PubMed ID: 19056254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the surface enhanced raman scattering (SERS) of bacteria.
    Premasiri WR; Moir DT; Klempner MS; Krieger N; Jones G; Ziegler LD
    J Phys Chem B; 2005 Jan; 109(1):312-20. PubMed ID: 16851017
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gold nanoparticle based surface-enhanced Raman scattering spectroscopy of cancerous and normal nasopharyngeal tissues under near-infrared laser excitation.
    Feng S; Lin J; Cheng M; Li YZ; Chen G; Huang Z; Yu Y; Chen R; Zeng H
    Appl Spectrosc; 2009 Oct; 63(10):1089-94. PubMed ID: 19843357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SERS detection of thrombin by protein recognition using functionalized gold nanoparticles.
    Bizzarri AR; Cannistraro S
    Nanomedicine; 2007 Dec; 3(4):306-10. PubMed ID: 18068092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-assembled Au nanoparticles as substrates for surface-enhanced vibrational spectroscopy: optimization and electrochemical stability.
    Fan M; Brolo AG
    Chemphyschem; 2008 Sep; 9(13):1899-907. PubMed ID: 18704901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Net-like assembly of Au nanoparticles as a highly active substrate for surface-enhanced Raman and infrared spectroscopy.
    Luo Z; Yang W; Peng A; Ma Y; Fu H; Yao J
    J Phys Chem A; 2009 Mar; 113(11):2467-72. PubMed ID: 19216546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface-enhanced Raman spectroscopic detection of a bacteria biomarker using gold nanoparticle immobilized substrates.
    Cheng HW; Huan SY; Wu HL; Shen GL; Yu RQ
    Anal Chem; 2009 Dec; 81(24):9902-12. PubMed ID: 19928907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical probes for biological applications based on surface-enhanced Raman scattering from indocyanine green on gold nanoparticles.
    Kneipp J; Kneipp H; Rice WL; Kneipp K
    Anal Chem; 2005 Apr; 77(8):2381-5. PubMed ID: 15828770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single gold microshell tailored to sensitive surface enhanced Raman scattering probe.
    Piao L; Park S; Lee HB; Kim K; Kim J; Chung TD
    Anal Chem; 2010 Jan; 82(1):447-51. PubMed ID: 19994858
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Meditating metal coenhanced fluorescence and SERS around gold nanoaggregates in nanosphere as bifunctional biosensor for multiple DNA targets.
    Liu Y; Wu P
    ACS Appl Mater Interfaces; 2013 Jun; 5(12):5832-44. PubMed ID: 23734937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous SERS detection and imaging of two biomarkers on the cancer cell surface by self-assembly of branched DNA-gold nanoaggregates.
    Li Y; Qi X; Lei C; Yue Q; Zhang S
    Chem Commun (Camb); 2014 Sep; 50(69):9907-9. PubMed ID: 25030218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of electromagnetic enhancement of surface enhanced hyper Raman scattering using plasmonic properties of binary active sites in single Ag nanoaggregates.
    Itoh T; Yoshikawa H; Yoshida K; Biju V; Ishikawa M
    J Chem Phys; 2009 Jun; 130(21):214706. PubMed ID: 19508086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characteristics of surface-enhanced Raman scattering and surface-enhanced fluorescence using a single and a double layer gold nanostructure.
    Hossain MK; Huang GG; Kaneko T; Ozaki Y
    Phys Chem Chem Phys; 2009 Sep; 11(34):7484-90. PubMed ID: 19690723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.